跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林正宗
研究生(外文):Cheng-Tsung Lin
論文名稱:三相四開關直流無刷馬達之無速度感測控制
論文名稱(外文):Speed Sensorless Control for Four-Switch Three-Phase Brushless DC Motor
指導教授:劉志文劉志文引用關係
指導教授(外文):Chih-Wen Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:79
中文關鍵詞:直流無刷馬達無感測控制三相四開關變頻器
外文關鍵詞:BLDC motorsensorless controlfour-switch three-phase inverter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
馬達驅動系統一直是工業發展不可或缺的重要一環,降低馬達驅動器的製造成本也是不變的趨勢。而本論文還提出新的無轉子位置量測器的換相控制技術。此無感測控制是偵測兩相浮動電壓訊號的交越點,以求出轉子所需要的換相時機。此無感測控制只需要兩個電壓訊號,不需要任何轉子位置感測器,不僅可以減少感測器和配線成本,還可以增加系統的可靠度。本論文針對三相四開關的直流無刷馬達驅動器所設計的非對稱脈寬調變技術和新型的無位置感測控制,不僅減少了電力開關的數量,且不需要額外的轉子位置感測器,已經實現了一個相當經濟的直流無刷馬達驅動器。
若直流無刷馬達是使用霍爾元件(Hall Sensor)或其低解析度的轉子位置感測器,在直流無刷馬達運轉時,其轉速的取樣率會隨這轉速改變而改變。而本論文所提出的考慮變取樣現象的模糊PI控制器是由三個模糊控制器和三個不同PI控制組成。模糊控制器根據馬達轉速將轉速誤差模糊化後,再由PI控制器根據模糊化後的轉速誤差求得輸出命令,再將三個PI控制器的輸出加總;如此在馬達轉速改變時,模糊控制器會給PI控制器適當的轉速誤差,以達到更強健的速度控制。而本文所提的模糊PI控制器,以馬達轉速為參考,減少模糊邏輯設計的複雜度,使整個理論更容易實踐。
最後本論文將所提之非對稱脈寬調變技術與新型的無感測控制,分別用德州儀器公司(Texas Instruments, TI, Incorporated)的數位訊號處理器(Digital Signal Processor, DSP),和美商賽靈思(Xilinx)的場域可程式閘道陣列(Field Programmable Gate Array, FPGA)來實現,主要說明本文所提之無位置感測的換相控制,不需要複雜的計算,所以之需要低成本的DSP或FPGA就可以完成。本論文所提出的馬達驅動器,從變頻器的架構、轉子位置感測到控制器的使用,都減少了其元件數量和硬體需求,以達到最經濟的直流無刷馬達驅動器。
This dissertation proposes a novel asymmetric pulse width modulation (PWM) scheme for four-switch three-phase (FSTP) brushless dc (BLDC) motor drives. This PWM scheme not only achieves the BLDC motor using FSTP inverter, but also does not need any current sensor and complex algorithm, so it can make the lowest manufacture cost of the inverter. Furthermore, this dissertation proposes a novel commutation control for the FSTP BLDC motor drive without position sensor. This sensorless control detects the crossing point of two floating voltages, and estimates the commutation timing. This sensorless control only needs two voltage sensors, so it not only reduces the cost of position sensors, but also increases the reliability of whole system.
When the BLDC motor drive uses Hall sensors as position sensors, sampling rates of the rotor speed will change with the rotor speed of BLDC motors. The fuzzy PI controller presented in this dissertation includes three fuzzy logics and three PI controllers. When the speed of BLDC motors changes, fuzzy logics will give PI controllers suitable speed errors to achieve robust control. The fuzzy logic of the fuzzy PI controller presented in this dissertation is based on the rotor speed, and therefore the controller reduces the complex of fuzzy logics and is easy to be implemented.
Finally, we implement our novel asymmetric PWM scheme and novel sensorless control in DSP (Digital Signal Processor) which is designed by Texas Instruments, TI, incorporated and FPGA (Field Programmable Gate Array) which is designed by Xilinx to prove that the sensorless control does not need complex calculation, and can be implemented in very low cost controller.
中文摘要 I
ABSTRACT II
LIST OF CONTENTS I
LIST OF FIGURES IV
LIST OF TABLES VII

CHAPTER 1 INTRODUCTION 1
1.1 Motivations 1
1.2 Literature Survey 6
1.2.1 The four-switch three-phase Inverter 6
1.2.2 Sensorless controls of BLDC motor drives 9
1.2.3 Start-up scheme 15
1.2.4 Fuzzy PI Controller for BLDC motors Considering Variable Sampling Effect 15
1.3 Contributions of this Dissertation 16
1.4 Organization of this Dissertation 17
CHAPTER 2 COMMUTATION CONTROL OF FSTP BLDC MOTOR DRIVES WITHOUT POSITION SENSOR 19
2.1 Introduction 19
2.2 The Four-Switch Three Phase BLDC motor drives 20
2.3 The FSTP BLDC Motor Drive Using the Conventional Voltage PWM Scheme 21
2.4 The Novel Voltage PWM Scheme 24
2.5 Position Sensorless Control of FSTP BLDC Motor 27
2.5.1 Back-EMF waveforms of FSTP BLDC motor Drives 27
2.5.2 The novel sensorless control scheme 27
2.5.3 The Starting Technique 29
2.6 Closing Remarks 31
CHAPTER 3 SPEED CONTROL OF BLDC MOTOR CONSIDERING VARIABLE SAMPLING EFFECT 32
3.1 Introduction 32
3.2 Continuous Time Model of BLDC motor 32
3.3 BLDC Motor System in Fixed Sampling Rate 33
3.4 Fuzzy PI Controller Considering Variable Sampling Effect 35
3.4.1 Fuzzifying 36
3.4.2 Fuzzy Control Rule 37
3.4.3 Defuzzification 39
3.5 Simulation in Mathworks SIMULINK/Matlab 39
3.5.1 Continuous Time Model of BLDC Motors 41
3.5.2 Variable Sampling Trigger 42
3.5.3 Discrete Time Speed and Variable Sampling Time interval Estimator 43
3.5.4 Fuzzy PI Controller Considering Variable Sampling Effect 44
3.5.5 Simulation Results 45
3.6 Closing Remarks 50
CHAPTER 4 THE IMPLEMENTATION OF DSP-BASED SENSORLESS CONTROLS 51
4.1 Introduction of TMS320F243 51
4.2 Experimental Setup 53
4.3 Flow chart of sensorless control for FSTP BLDC motor drives 55
4.4 Experimental results 56
4.5 Closing Remarks 58
CHAPTER 5 THE IMPLEMENTATION OF FPGA-BASED SENSORLESS CONTROL 59
5.1 Introduction of Xilinx SpartanTM-3E 59
5.2 Experimental Setup 62
5.3 Experimental results 63
5.4 Closing Remarks 67
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 68
REFERENCES 70
A. Brushless DC Motors 70
B. Four-Switch Three-Phase Inverter 70
C. Sensorless Control of Brushless DC Motors 72
D. Starting Method 74
E. Implementation of FPGA 75
F. Fuzzy PI controller for FSTP BLDC motor drives 75
Biographical Note 79
A. Journal papers: 79
B. Conference Papers: 79
A. Brushless DC Motors
[1]T. J. E. Miller, “Brushless Permanent-Magnet and Reluctance Motor Drives”, New York: Oxford University Press, 1989.
[2]P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives. Part II: The brushless DC motor drive”, IEEE Transactions on Industry Applications, vol. 25, pp. 274-279, 1989.
[3]D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994.
B. Four-Switch Three-Phase Inverter
[4]H. W. Van Der Broeck, J. D. Van Wyk, “A Comparative Investigation of a Three Phase Induction Machine Drive with a Component Minimized Voltage Fed Inverter Under Different Control Options”, Proceedings of International Semiconductor Power Converter Conference, pp. 24-27, 1982.
[5]Travis B. Bashaw and Thomas A. Lipo, “B4 topology options for operating three phase induction machines on single phase grids”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 3, pp. 1894-1902, 2005.
[6]C.B. Jacobina, E.R.C. da Silva, A.M.N. Lima and R.L.A. Ribeiro, “Vector and scalar control of a four switch three phase inverter”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), vol. 3, pp. 2422-2429, 1995.
[7]Gi-Taek Kim and Thomas A. Lipo, “VSI-PWM rectifier-inverter system with a reduced switch count”, IEEE Transactions on Industry Applications, vol. 27, pp. 1331-1337, 1996.
[8]Darwin T.W. Liang, “ Novel Modulation Strategy for a Four-switch Three-phase Inverter”, Proceedings of Power Electronics and Drive Systems, vol. 2, pp. 26-29, 1997.
[9]B. K. Lee, B. Fahimi, and M. Ehsani, “Overview of reduced parts converter topologies for AC motor drives”, Proceedings of IEEE Power Electronics Specialists Conference (PESC), vol. 4, pp. 2019-2024, 2001.
[10]M. Azab and A.L. Orille, “Novel flux and torque control of induction motor drive using four switch three phase inverter”, Proceedings of Annual Conference of IEEE Industrial Electronics Society (IECON), vol. 2, pp. 1268-1273, 2001.
[11]Z. Jiang, D. Xu and Z. Xiangjuan “A study of the four-switch low cost inverter that uses the magnetic flux control method”, Proceedings of IEEE Power Electronics and Motion Control Conference, vol. 3 pp. 1368-1371, 2004.
[12]Maurício Beltrão de Rossiter Corrêa, Cursino Brandão Jacobina, Edison Roberto Cabral da Silva and Antonio Marcus Nogueira Lim, “A General PWM Strategy for Four-Switch Three-Phase Inverters”, IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1618-1627, 2006.
[13]J.-H. Lee, S.-C. Ahm and D.-S. Hyun, “A BLDCM drive with trapezoidal back EMF using four-switch three phase inverter”, Proceedings of IEEE Industry Applications, vol. 3, pp. 1705-1709, 2000.
[14]Byoung-Kuk Lee, Tae-Hyung Kim and M. Ehsani, “On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications: topology and control”, IEEE Transactions on Power Electronics, vol. 8, pp. 164-172, 2003.
[15]B. K, Lee, J. P. Hong and M. Ehsani, “Generalized design methodology of reduced parts converters for low cost BLDC motor drives”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 2003.
[16]Sang-Hyun Park, Tae-Sung Kim, Sung-Chan Ahn, and Dong-Seok Hyun, “A simple current control algorithm for torque ripple reduction of brushless DC motor using four-switch three-phase inverter”, Proceedings of IEEE Power Electronics Specialists Conference (PESC), vol. 2, pp. 574-579, 2003.
[17]Joon-Ho Lee, Tae-Sung Kim, and Dong-Seok Hyun, “A study for improved of speed response characteristic in four-switch three-phase BLDC motor”, Proceedings of Annual Conference of the IEEE Industrial Electronics Society (IECON), vol. 2, pp. 1339-1343, 2004.
[18]A.H. Niasar, A. Vahedi, and H. Moghbelli, “ANFIS-Based Controller with Fuzzy Supervisory Learning for Speed Control of 4-Switch Inverter Brushless DC Motor Drive”, Proceedings of IEEE Power Electronics Specialists Conference (PESC), vol. 2, pp. 1-5, 2006.
[19]Abolfazl Halvaei Niasar, Abolfazl Vahedi, and Hassan Moghbelli, “Analysis and Control of Commutation Torque Ripple in Four-Switch, Three-Phase Brushless DC Motor Drive”, Proceedings of IEEE International Conference on Industrial Technology (ICIT), pp. 239-246, 2006.
C. Sensorless Control of Brushless DC Motors
[20]J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC motor”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), vol. 1, pp. 143-150, 1999.
[21]Paul P. Acarnley and John F. Eatson, “Review of Position-Sensorless Operation of Brushless Permanent-Magnet Machines”, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 352-362, 2006.
[22]K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer control for sensorless brushless motor”, IEEE Transactions on Industry Applications, vol. IA-21, no. 4, pp. 595–601, May/Jun. 1985.
[23]S. Mosimoto, Y. Takeda and T. Hirasa, “Loss mimimization control of permanent magnet synchronous motor drives”, IEEE Transactions on Industrial Electronics, vol. 41, no. 5, pp. 511-517, 1994.
[24]Cheng-Hu Chen, and Ming-Yang Cheng, “A new sensorless control scheme for brushless DC motors without phase shift circuit”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1084-1089, 2005.
[25]R. C. Becerra, T. M. Jahns, and M. Ehsani, “Four quadrant sensorless brushless ECM drive”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 202-209, 1991.
[26]Der-Fa Chen, Tian-Hua Liu, and Che-Kai Hung, “Design and Implementation of a Sensorless PMSM Drive Including Standstill Starting”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), pp. 987 - 992, 2004.
[27]Yih-Hua Chang, Tian-Hua Liu, and Chia-Chin Wu, “A Novel Permanent Magnet Synchronous Motor Drive System without using a Rotor Position”, Proceedings of IEEE Conference on Industrial Electronics and Applications (ICIEA), 2006.
[28]J. C. Moreira, “Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1394-1401, 1996.
[29]J. X. Shen, Z. Q. Zhu, and David Howe, “Sensorless Flux-Weakening Control of Permanent-Magnet Brushless Machines Using Third Harmonic Back EMF”, IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1629-1636, 2004.
[30]S. Ogasawara and H. Akagi, “An approach to position sensorless drive for brushless DC motors”, IEEE Transactions on Industry Applications, vol. 27, pp. 928-933, 1991.
[31]R.-L. Lin, M.-T. Hu, C.-Y. Lee and S.-C. Chen, “Using phase-current sensing circuit as the position sensor for brushless DC motors without shaft position sensor”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), vol. 1, pp. 215-218, 1989.
[32]J. P. Johnson and M. Ehsani, “Sensorless brushless DC control using a current waveform anomaly”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), vol. 1, pp. 151-158, 1999.
[33]T. Senjya and K. Uezato, “Adjustable Speed Control of Brushless DC Motors without Position and Speed Sensors”, Proceedings of IEEE Industry Applications Society Annual Meeting (IAS), pp. 160-164, 1995.
[34]A. Consoli, S. Musumeci, A. Reciti, and A. Testa, “Sensorless Vector and Speed Control of Brushless Motor Drives”, IEEE Transactions on Industrial Electronics, vol. 41, pp. 91-96, 1994.
[35]T. Takeshita and N. Matsui, “Sensorless Brushless DC Motor Drive with EMF Constant Identifier”, Proceedings of Industrial Electronics, Control, and Instrumentation, vol. 1, pp. 14-19, 1994.
[36]N. Matsui and M. Shigyo, “Brushless DC Motor Control without Position and Speed Sensors”, IEEE Transactions on Industry Application, vol. 28, pp. 120-127, 1992.
[37]M. A. Hoque and M. A. Rahman, “Speed and Position Sensorless Permanent Magnet Synchronous Motor Drives”, Proceedings of Electrical and Computer Engineering, vol. 2, pp. 689-692, 1994.
[38]M. Tomita, T. Senjyu, S. Doki, and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations”, IEEE Transactions on Industrial Electronics, vol. 45, pp. 274-282, 1998.
[39]Byoung-Gun Park, Tae-Sung Kim, Ji-Su Ryu, and Dong-Seok Hyun, “Fuzzy Back-EMF Observer for Improving Performance of Sensorless Brushless DC Motor Drive”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 2006.
[40]Hyeong-Gee Yeo, Chanf-Seok Hong, Ji-Yoon Yoo, Hyeon Jang, Yeong-Don Bae, and Yoon-Seo Park, “Sensorless drive for interior permanent magnet brushless DC motors”, Proceedings of Electric Machines and Drives, 1997.
[41]Hung-Chi Chen and Chang-Ming Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning”, IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 747-756, 2002.
[42]Nobuyuki Matsui, “Sensorless PM brushless DC motor drives”, IEEE Transactions on Industrial Electronics, vol. 43, no. 2, pp. 300-308, 1996.
[43]Hung-Chi Chen, “Development of Position Sensorless Brushless DC Motor Drives,” Ph.D. dissertation, Department of Electrical Engineering, National Tsing Hua University, Taiwan, 2000.
D. Starting Method
[44]P. Voultoury, “Sensorless Speed Controlled Brushless DC Drive using the TMS320C242 DSP Controller”, TI Application Report SPRA498, December, 1998.
[45]D, Peters and J. Harth, “I.C.s Provide Control for Sensorless DC Motors”, EDN, 1993.
[46]N. Ertugrul and P. Acarnley, “A New Algorithm for Sensorless Operation of Permanent Magnet Motors”, IEEE Transactions on Industry Application, vol. 30, pp. 126-133, 1994.
[47]M. Park and H. Lee, “Sensorless Vector Control of Permanent Magnet Synchronous Motors Using Adaptive Identification”, Proceedings of Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 209-214, 1989.
E. Implementation of FPGA
[48]A. Muthuramalingam, S. V. Vedula and P. A. Janakiraman, “Performance evaluation of an FPGA controlled soft switched inverter”, IEEE Transactions on Power Electronics, vol. 21, no. 4, pp.923-932, 2006.
[49]Diego Puyal, Luis A. Barragán, Jesús Acero, José M. Burdío and Ignacio Millán, “An FPGA-Based Digital Modulator for Full- or Half-Bridge Inverter Control”, IEEE Transactions on Power Electronics, vol. 21, no. 5, pp.1479 - 1483, 2006.
[50]Da Zhang, Student Member, IEEE, Hui Li and Emmanuel G. Collins, “Digital Anti-Windup PI Controllers for Variable-Speed Motor Drives Using FPGA and Stochastic Theory”, IEEE Transactions on Power Electronics, vol. 21, no. 5, pp.1496-1501, 2006.
[51]Ivo Barbi, Roger Gules, Richard Redl and Nathan O. Sokal, “DC-DC Converter: Four Switch Vpk=Vin/2, Capacitive Turn-off Snubbing, ZV Turn-On”, IEEE Transactions on Power Electronics, vol. 19, no. 4, pp.918-927, 2004.
[52]Prasad N. Enjeti and Ashek Rahman, “A New Single-Phase to Three-Phase Converter with Active Input Current Shaping for Low Cost ac Motor Drives”, IEEE Transactions on Industry Applications, vol. 29, no. 4, pp.806-813, 1993.
F. Fuzzy PI controller for FSTP BLDC motor drives
[53]H.M. Al-Rahmani and G.F. Franklin, “Multirate control: a new approach”, Automatica, vol. 28, no. 1, pp. 35-44, 1992.
[54]H. In and C. Zhang, “A multirate digital controller for model matching”, Automatica, vol. 30, no. 6, pp. 1043-1050, 1994.
[55]P. Colaneri and G. De Nicolao, “Multirate LQG control of continuous-time stochastic systems”, Automatica, vol. 31, no. 4, pp. 591-596, 1995.
[56]M.J. Er and B.D.O. Anderson, “Design of reduced-order multirate output linear functional observer-based compensator”, Automatica, vol. 31, no. 2, pp. 237-242, 1995.
[57]M. De La Sen, “The reachability and observability of hybrid multirate sampling linear systems”, Computers and Mathematical Applications, vol. 31, no. 1,pp. 109- 122, 1996.
[58]K.G. Arvanitis and Kalogeropoulos, “Stability robustness of LQ optimal regulators based on multirate sampling of plant output”, Journal of Optimization Theory and Applications, vol. 97, no. 2, pp. 299-337, 1998.
[59]T. Hara and M. Tomizuka, “Multi-rate controller for hard disk drive with redesign of state estimator”, Proceedings of American Control Conference, pp. 3033-3037, 1998.
[60]S.E. Baek and S.H. Lee, “Design of a multi-rate estimator and its application to a disk drive servo system”, Proceedings of American Control Conference, pp. 3640-3644, 1999.
[61]K.L. Moore, S.P. Bhattacharyya and M. Dahleh, “Capabilities and limitations of multirate control schemes”, Automatica, vol. 29, no. 41, pp. 941-95, 1993.
[62]H. Fujimoto, A. Kawamura and M. Tomizuka, “Generalized digital redesign method for linear feedback system based on N-delay control”,IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, June 8, pp. 101-10, 1999.
[63]Y. Hori, “Robust and adaptive control of a servomotor using low precision shaft encoder”, Proceedings of Annual Conference of IEEE Industrial Electronics Society (IECON), pp. 73-78, 1993.
[64]A.M. Phillips, “Multi-rate and variable-rate estimation and control of systems with limited measurements with applications to information storage devices”, Ph.D. dissertation, Department of Mechanical Engineering, University of California, Berkeley, 1995.
[65]A.M. Phillips and M. Tomizuka, “Multi-rate estimation and control under time-varying data sampling with applications to information storage devices”, Proceedings of American Control Conference, pp. 4151- 4155, 1996.
[66]Jia-Yush Yen, Yang-Lin Chen and Masayoshi Tomizuka , “Variable Sampling Rate Controller Design for Brushless dc Motor,” Proceedings of the 41st IEEE Conference on Decision and Control, pp. 462-467, 2002.
[67]Lilit Kovudhikulrungsri and Takafumi Koseki, “Precise Speed Estimation from a Low-Resolution Encoder by Dual-Sampling-Rate Observer”, IEEE/ASME Transactions on Mechatronics, vol. 11, no. 6, 2006.
[68]Jeu-Min Lin, Shyh-Jier Huang, and Kuang-Rong Shih, “Application of Sliding Surface-Enhanced Fuzzy Control for Dynamic State Estimation of A Power System”, IEEE Transactions on Power Systems, vol. 18, no. 2, pp.570-577, 2003.
[69]Faa-Jeng Lin and Chih-Hong Lin, “A Permanent-Magnet Synchronous Motor Servo Drive Using Self-Constructing Fuzzy Neural Network Controller”, IEEE Transactions on Energy Conversion, vol. 19, no. 1, pp. 66-72, 2004.
[70]Faa-Jeng Lin and Po-Hung Shen, “A Linear Synchronous Motor Drive Using Robust Fuzzy Neural Network Control”, Proceedings of the 5th World Congress on Intelligent Control and Automation, pp. 4386-4390, 2004.
[71]S. G. Anavatti, S. A. Salman, and J. Y. Choi, “Fuzzy + PID Controller for Robot Manipulator”, Proceedings IEEE CIMCA-IAWTIC’06, 2006.
[72]George K. I. Mann, Bao-Gang Hu, and Raymond G. Gosine, “Analysis of Direct Action Fuzzy PID Controller Structures”, IEEE Transactions on Systems, Man and Cybernetics, 1999.
[73]Gwo-Ruey Tu and Rey-Chue Hwang, “Optimal PID speed control of brushless DC motors using LQR approach”, Proceedings of IEEE Conference on Systems, Man and Cybernetics, pp. 473-478, 2004.
[74]Gene F. Franklin, J. David Powell, and Michael Workman, “Digital Control of Dynamic Systems”, Addison-Wesley, ISBN 0-201-33153-5, 1997.
[75]C. W. Tao and Jin-Shiuh Taur, “Flexible Complexity Reduced PID-Like Fuzzy Controllers”, IEEE Transactions on Systems, Man and Cybernetics, 2000.
[76]Xiaorong Xie, Qiang Song, Gangui Yan, and Wenhua Liu, “MATLAB-based simulation of three-level PWM inverter-fed motor speed control system”, Proceedings of Applied Power Electronics Conference and Exposition, pp. 1105-1110, 2003.
[77]C.D.French and P.P.Acarnley, “Simulink real time controller implementation in a DSP based motor drive system”, IEEE Colloquium on DSP Chips in Real Time Measurement and Control, pp. 3/1-3/5, 1997.
[78]K. L. Shi, T. F. Chan, and Y. K. Wong, “Modelling of the three-phase induction motor using SIMULINK”, Proceedings of IEEE Conference on Electric Machines and Drives, pp. WB3/6.1 – WB3/6.3, 1997.
[79]“TMS320F243 Evaluation Module”, TI Technical Reference, March, 2000.
[80]“Spartan-3E FPGA Family: Complete Data Sheet”, Xilinx Data Sheet DS312, May, 2007.
[81]Lasse Eriksson and Heikki N. Koivo, “Tuning of Discrete-Time PID Controllers in Sensor Network based Control Systems”, Proceedings of IEEE International Symposium on Computation intelligence in Robotics and Automation, pp. 359-364, 2005.
[82]Jianwen Shao, Dennis Nolan, and Thomas Hopkins, “Improved direct back EMF detection for sensorless brushless DC (BLDC) motor drives”, Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 300-305, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top