跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪健益
研究生(外文):Jian-Yi Hong
論文名稱:具定位控制之線性超音波馬達驅動器
論文名稱(外文):Linear Ultrasonic Motor Driver with Positioning Control
指導教授:林法正林法正引用關係謝耀慶
指導教授(外文):Faa-Jeng LinYao-Ching Hsieh
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:模糊類神經網路高功因線性超音波馬達
外文關鍵詞:Fuzzy neural networkHigh-power-factorLinear ultrasonic motor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目的是發展以dsPIC為基礎之模糊類神經網路控制線性超音波馬達驅動系統的輸出,以達到定位控制之目的。此系統分為兩部份,一為驅動系統部份,另一為控制系統部份。在驅動系統部份,本論文設計單級高功因半橋與單級高功因E類驅動電路來驅動線性超音波馬達。單級高功因半橋驅動電路,電路架構由降升壓轉換器和半橋共振換流器所組成。當電路切換頻率固定,讓降升壓轉換器操作在不連續工作模式來得到高功率因數。利用非對稱脈波寬度調變的控制機制,調整傳遞到負載共振換流器的有效電壓來改變輸出電壓。並在工作範圍內確保功率開關元件可以達到零電壓或零電流導通。單級高功因E類驅動電路,電路的架構是由降升壓轉換器與E類共振換流器所組成。當電路切換頻率固定,讓降升壓轉換器操作在不連續工作模式來得到高功率因數。利用脈波寬度調變的控制機制,調整傳遞到負載共振換流器的有效電壓來改變輸出電壓。並在工作範圍內確保功率開關元件可以達到零電流導通。
  由於線性超音波馬達的總集數學模型不易獲得,且馬達參數具非線性且時變特性,易受溫度、負載轉矩及加在定子、轉子的彈簧靜壓力影響,而智慧型控制系統不需受控體之詳細數學模型,利用對受控體之瞭解,而提出推理機制與學習法則,達到系統之強健控制目的,並可提昇控制系統之精密度。因此在控制系統部份,本論文提出利用模糊類神經網路控制器來控制線性超音波馬達運動平台系統,藉以得到良好的命令追隨響應。本論文最後經由實測結果來應證所提出方法之有效性。
The purpose of this thesis is to develop a dsPIC-based fuzzy neural networks driver for a linear ultrasonic motor (LUSM) which can achieve position control. The developed systems can be separated into two parts, one is the driver system, and the other is the positioning control system. As for drivers, a single-stage high-power-factor half bridge resonant inverter and a single-stage high-power-factor class E resonant inverter are developed to drive the LUSM. The single-stage half bridge resonant one is originated from a buck-boost converter integrated with a half bridge resonant inverter. With asymmetrical pulse-width-modulation (APWM), the output voltage can be effectively regulated. The single-stage class E resonant driver is integration of a buck-boost converter and class E resonant inverter. For both of the drivers, the power switches exhibit either zero-voltage-switching (ZVS) or zero-current-switching (ZCS) over the operating range to enhance the circuit efficiency. The buck-boost converter is operated at discontinuous conduction mode (DCM) to provide nearly unity power factor at a fixed frequency.
Since the exact mathematical model of LUSM is not easy to figure out. A fuzzy neural network (FNN) controller is developed in this thesis to regulate the single-axis platform. With the proposed intelligent controllers, the position response of the mover of the single-axis platform possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic reference trajectories. Finally, the effectiveness of the proposed control schemes is verified by some experimental results.
摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 概論 1
1.2 內容大綱 5
第二章 線性超音波馬達系統 7
2.1 超音波馬達簡介 7
2.2 線性超音波馬達工作平台 8
2.2.1 線性超音波馬達之架構 9
2.2.2 工作原理 10
2.2.3 線性超音波馬達規格 14
2.3 超音波馬達系統之文獻探討 14
2.3.1 超音波馬達驅動電路文獻探討 14
2.3.2 超音波馬達智慧型控制文獻探討 15
第三章 dsPIC數位訊號控制器 17
3.1 dsPIC數位訊號控制器簡介 17
3.2 dsPIC數位訊號控制器中央處理單元之架構 21
3.3 dsPIC數位訊號控制器各部功能操作原理及說明 22
3.3.1 馬達控制PWM模組 22
3.3.2 定位編碼器介面模組 22
3.3.3 類比數位訊號轉換器 23
3.4 dsPIC數位訊號控制器設計架構 23
第四章 單級高功因半橋驅動電路 25
4.1 單級高功因半橋驅動電路架構 25
4.2 單級高功因半橋驅動電路工作模式分析 26
4.3 單級高功因半橋驅動電路分析 31
4.3.1 單級高功因半橋驅動電路之功因修正電路 31
4.3.2 單級高功因半橋驅動電路之負載共振換流器 33
4.4 單級高功因半橋驅動電路參數設計 36
4.4.1 單級高功因半橋驅動之降升壓電感Lb的決定 36
4.4.2 單級高功因半橋負載共振電路Ls和Cs的設計 36
4.5 單級高功因半橋驅動電路實驗量測 37
第五章 單級高功因E類驅動電路 41
5.1 單級高功因E類驅動電路架構 41
5.2 單級高功因E類驅動電路工作模式分析 43
5.3 單級高功因E類驅動電路分析 48
5.3.1 單級高功因E類驅動電路之功因修正電路 49
5.3.2 E類共振換流器電路分析 51
5.4 單級高功因E類驅動電路參數設計 54
5.4.1 單級高功因E類驅動之降升壓電感Lb的決定 54
5.4.2 單級高功因E類負載共振電路Ls、Cs和C1的設計 54
5.5 單級高功因E類驅動電路實驗量測 58
第六章 應用模糊類神經網路控制於線性超音波馬達系統 63
6.1 簡介 63
6.1.1 模糊控制系統之結構 63
6.1.2 類神經網路 65
6.1.3 倒傳遞類神經網路 66
6.1.4 線上倒傳遞類神經網路 66
6.2 模糊類神經網路控制系統 67
6.2.1 模糊類神經網路控制系統之描述 67
6.2.2 線上學習演算法則 70
6.3 線性超音波馬達實測系統 73
6.4 實作結果 74
第七章 結論 77
參考文獻 79
[1] 沈孟樵,線性超音波馬達共振驅動電路與智慧型控制,私立中原大學電機工程學系碩士學位論文,2001。
[2] J. S. Subjak, and J. S. Mcquilkin, “Harmonics-Causes, Effects, Measurements, and Analysis: An Update,” IEEE Transactions on Industry Applications, Vol. 26, No. 6, pp. 1034-1042, Nov./Dec.1990.
[3] R. P. Stratford, “Harmonic Pollution on Power Systems-A Change in Philosophy,” IEEE Transactions on Industry Applications, Vol. 16, No. 5, Sep./Oct. 1980.
[4]A. R. Prasad, P. D. Ziogas, and S. Manlas, “A Novel Passive Waveshaping Method for Single-Phase Diode Rectifiers,” IEEE Transactions on Industrial Electronics, Vol. IE-37, No. 6, pp. 521-530, Dec. 1990.
[5]C. S. Moo, H. L. Cheng, and S, J. Guo, “Designing Passive LC Filters with Contour Maps,” International Conference on Power Electronics and Drive Systems, pp. 834-838, 1997.
[6]M. H. Kheraluwala and S. A. Hamamsy, “Modified Valley Fill High Power Factor Electronic Ballast for Compact Fluorescent Lamps,” Conference Record of IEEE Power Electronics Specialists Conference, pp. 10-14, 1995.
[7]S. Y. Chan, D. Y. Guo, and C. S. Moo, “Analysis and Design of Valley-Fill Filter,” Proceedings of the 18th Symposium on Electrical Power Engineering, pp.600-604, 1997.
[8]M. Kazerani, P. D. Ziogas, and G. Joos, “A Novel Active Current Waveshaping Technique for Solid-State Input Power Factor Conditioners,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 1, pp. 72-78, Feb. 1991.
[9]V. J. Thottuvelil, D. Chin, and G. C. Verghese, “Hierarchical Approaches to Modeling High-Power-Factor AC-DC Converters,” IEEE Transactions on Power Electronics, Vol. 6, No. 2, pp. 179-187, April 1991.
[10]Z. Lai and K. M. Smedley, “A Family of Continuous-Conduction-Mode Power-Factor-Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 501-510, May 1998.
[11]A. F. de Souza and I. Barbi, “A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 1, pp. 82-90, Feb. 1999.
[12]H. Endo, T. Yamashita, and T. Sugiura, “A High-Power-Factor Buck Converter,” Conference Record of IEEE Power Electronics Specialists Conference, pp. 1071-1076, 1992.
[13]J. C. Salmon, “Techniques for Minimizing the Input Current Distortion of Current-Controlled Single-Phase Boost Rectifiers,” IEEE Transactions Power Electron., Vol. 8, No. 4, pp. 509-520, Oct. 1993.
[14]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysis of a Hysteretic Boost Power Factor Correction Circuit,” in Conference Record of Power Electronics Specialist Conference, pp. 800-807, 1990.
[15]K. H. Liu, and Y. L. Lin, “Current Waveform Distortion in Power Factor Correction Circuits Employing Discontinuous-Mode Boost Converters,” Conference Record of IEEE Power Electronics Specialists Conference, pp. 825-829, 1989.
[16]L. Huber and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-Input-Voltage Range,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 528-537, May 1998.
[17]A. R. Prasad, P. D. Ziogas, and S. Manias, “A New Active Power Factor Correction Method for Single-Phase Buck-Boost AC-DC Converter,” Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, pp. 814-820, 1992.
[18]C. K. Tse and M. H. L. Chow, “New Single-Stage PFC Regulator Using the Sheppard-Taylor Topology,” IEEE Transactions on Power Electronics, Vol. 13, No. 5, pp. 842-851, Sep. 1998.
[19] J.-G. Cho, C.-T. Jeong, H.-S. Lee, and G.-H. Rim, “Novel Zero-Voltage-Transition Current-Fed Full-Bridge PWM Converter for Single-Stage Power Factor Correction,” IEEE Transactions on Power Electronics, Vol. 13, No. 6, pp. 1005-1012, Nov. 1998.
[20]C. S. Moo, C. R. Lee, and Y. T. Chua, “High-Power-Factor Electronic Ballast with Self-Excited Series Resonant Inverter,” Conference Record of the 1996 IEEE Industry Applications Society Annual Meeting, pp. 2136-2140, 1996.
[21]M. H. L. Chow, K. W. Siu, C. K. Tse, and Y.-S. Lee, “A Novel Method for Elimination of Line-Current Harmonics in Single-Stage PFC Switching Regulators,” IEEE Transactions on Power Electronics, Vol. 13, No. 1, pp. 58-66, Jan. 1998.
[22] L. Huber and M. M. Jovanovic, “Single-Stage Single-Switch Input-Current-Shaping Technique with Fast-Output-Voltage Regulation,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 476-486, May 1998.
[23]T.-F. Wu, T.-H. Yu, and M.-C. Chiang, “Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 586-597, May 1998.
[24]T.-F. Wu and T.-H. Yu, “Analysis and Design of a High Power Factor, Single-Stage Electronic Dimming Ballast,” IEEE Transactions on Industry Applications, Vol. 34, No. 3, pp. 606-615, May/June 1998.
[25]Y.-S. Lee, K.-W. Siu, and B.-T. Lin, “Novel Single-Stage Isolated Power-Factor-Corrected Power Supplies with Regenerative Clamping,” IEEE Transactions on Industry Applications, Vol. 34, No. 6, pp. 1299-1308, Nov./Dec. 1998.
[26]T. Maeno, and D. B. Bogy, “Effect of the hydrodynamic bearing on rotor/stator contact in a rang-type ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 6, pp. 675-682, 1992.
[27]T. Maeno, and D. B. Bogy, “Effect of the hydrodynamic bearing on rotor/stator contact in a ring-type ultrasonic motor,” IEEE Ultrasonics Symposium, pp. 933-936, 1991.
[28]O. Ohnishi, O. Myohga, T. Uchikawa, M. Tamegai, and T. Inoue, “Piezoelectric ultrasonic motor using longitudinal-torsional composite resonance vibration,” IEEE Transactions on Ultrasonics, Ferroelectric, and Frequency Control, vol. 40, no. 6, pp. 687-693, 1993.
[29]Y. Tomikawa, K. Adachi, M. Aoyagi, T. Sagae, and T. Takano, “Some constructions and characteristics of rod-type piezoelectric ultrasonic motors using longitudinal and torsional vibrations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39 , no. 5, pp. 600-607, 1992.
[30]M. Umeda, T. Nakazawa, and K. Ohnishi, “Positioning characteristic of ultrasonic rotary actuator with two mode operation,” IEEE Ultrasonics Symposium, pp. 1201-1204, 1990.
[31]T. Maeno, T. Tsukimoto, and A. Miyake, “Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 6, pp. 668-674, 1992.
[32]T. Takano, Y. Tomikawa, and C. Kusakabe, “Same phase drive-type ultrasonic motors using two degenerate bending vibration modes of a disk,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 2, pp. 180-185, 1992.
[33]W. P. Robbins, D. L. Polla, and D. E. Glumac, “Compact high-displacement piezoelectric actuator with potential mircomechanical applications,” IEEE Ultrasonics Symposium, pp. 1191-1193, 1990.
[34]M. Kurosawa, K. Nakamura, and S. Ueha, “Numerical analysis of the property of a hybrid transducer type ultrasonic motor,” IEEE Ultrasonics Symposium, pp. 1187-1190, 1990.
[35]K. Nakamura, M. Kurosawa, H. Kurebayashi, and S. Ueha, “An estimation of load characteristics of an ultrasonic motor by measuring transient responses,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 38, no. 5, pp. 481-485, 1991.
[36]H. Hirata, “Characteristics estimation of a traveling wave type ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 40, no. 4, pp. 402-406, 1993.
[37]T. Sashida, and T. Kenjo, An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993.
[38]S. Ueha, Y. Tomikawa, M. Kurosawa, and N. Nakamura, Ultrasonic Motors Theory and Applications. Oxford: Clarendon Press, 1993.
[39]Y. Tomikawa, T. Takano, and H. Umeda, “Thin rotary and linear motors using a double-mode piezoelectric vibrator of the first longitudinal and second bending modes,” Jpn. J. Appl. Phys., vol. 31, pt. 1, no. 9B, pp. 3073-3076, 1992.
[40]M. Aoyagi, Y. Tomikawa, and T. Takano, “Ultrasonic motors using longitudinal and bending multimode vibrators with mode coupling by externally additional asymmetry or internal nonlinearity,” Jpn. J. Appl. Phys., vol. 31, pt. 1, no. 9B, pp. 3077-3080, 1992.
[41]M. Aoyagi, and Y. Tomikawa, “Ultrasonic motors using longitudinal and bending multimode vibrators with mode coupling caused by external additional asymmetry,” Jpn. J. Appl. Phys., vol. 32, pt. 1, no. 9B, pp. 4190-4193, 1993.
[42]M. Kummel, S. Goldschmidt, and J. Wallaschek, “Theoretical and experimental studies of a piezoelectric ultrasonic linear motor with respect to damping and nonlinear material behaviour,” Ultrasonics, vol. 36, pp. 103-109, 1998.
[43]J. Zumeris, Ceramic Motor. United States Patent, 5777423, 1998.
[44] 涂景翔,基因演算法控制之線型壓電陶瓷馬達驅動系統,私立元智大學電機工程學系碩士學位論文,2004。
[45]林法正、魏榮宗與段柔勇,超音波馬達之驅動與智慧型控制,滄海書局,1999。
[46]F. J. Lin and R. J. Wai, and M. P. Chen, “Wavelet neural network control for linear ultrasonic motor drive via adaptive sliding-mode technique,” IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, vol. 50, no. 6, pp. 686-698, 2003.
[47]F. J. Lin and P. H. Shieh, “Recurrent RBFN-based fuzzy neural network control for X-Y-Theta motion control stage using linear ultrasonic motors”, IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, vol. 53, no. 12, pp. 2450-2464, 2006.
[48]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[49]L. X. Wang, A Course in Fuzzy Systems and Control. NJ: Prentice-Hall, 1997.
[50]O. Omidvar and D. L. Elliott, Neural Systems for Control. New York: Academic, 1997.
[51]W. Y. Wang, T. T. Lee, C. L. Liu, and C. H. Wang, “Function approximation using fuzzy neural networks with robust learning algorithm”, IEEE Transactions on Systems Man and Cybernetics Part B, vol. 27, pp. 740-747, 1997.
[52]Y. H. Kim, F. L. Lew, and C. T. Abdallah, “A dynamic recurrent neural-network-based adative observer for a class of nonlinear systems”, Automatica, vol. 33, no. 8, pp. 1539-1543, 1997.
[53]G. A. Rovithakis and M. A. Christodoulou, “Adaptive control of unknown plants using dynamical neural networks”, IEEE Transactions on Systems Man and Cybernetics, vol. 25, pp. 400-412, 1994.
[54]C. H. wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline membership function and its applications in fuzzy-neural control”, IEEE Transactions on Systems Man and Cybernetics, vol. 25, pp. 841-851, 1995.
[55] 曾百由,dspic 數位訊號控制器原理與應用,宏友圖書開發股份有限公司,2005。
[56]楊東益,單級高功因非對稱波寬調光之螢光燈電子安定器,國立中山大學電機工程學系碩士學位論文,2000。
[57]黃世宏,單級高功因E類共振換流器之螢光燈電子安定器,國立中山大學電機工程學系碩士學位論文,2002。
[58]E. Deng and S. Ćuk, “Single Switch, Unity Power Factor, Lamp Ballasts,” IEEE Applied Power Electronics Conference, pp. 670-676, 1995.
[59]D. E. Rumelhart, J. L. Mclelland, and PDP Research Group, Parallel Distributed Processing. Cambridge: MIT Press, vol. 1, 1986.
[60]Y. Izuno, and M. Nakaoka, “High performance and high precision ultrasonic motor-actuated positioning servo drive system using improved fuzzy reasoning controller,” in IEEE-PESC record, pp. 1269-1274, 1994.
[61]R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and control. New York: John Willy & Sons, 1994.
[62]洪英智,以FPGA為基礎之類神經網路控制線型超音波馬達驅動系統,國立東華大學電機工程學系碩士學位論文,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊