跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊博淳
研究生(外文):Zhuang Bo-Chuen
論文名稱:有限元素分析於木琴調音實務之應用
論文名稱(外文):Application of Finite Element Analysis on theXylophone/Marimba Tuning Process
指導教授:吳四印程安邦程安邦引用關係
指導教授(外文):Wu Si-YinCherng An-Pan
口試委員:吳四印程安邦羅盛峰鄭德淵
口試委員(外文):Wu Si-YinCherng An-Pan
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:森林暨自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:木琴馬林巴木琴有限元素分析實驗模態分析調音
外文關鍵詞:XylophoneMarimbaExperimental modal analysisFinite element analysisTuning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:722
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
為了能有效地應用有限元素分析方法(Finite Element Analysis ,FEA),進
行木琴琴鍵精確調音之模擬,須確認影響琴鍵彎曲第一、二、三振態頻率
之關鍵區域,以及不同的質量減損率,對琴鍵各振態頻率之影響程度等資
訊。
本研究選擇木琴琴鍵常用之非洲花梨木(Pterocarpus soyauxii),另外挑選
花旗松(Pseudotsuga menziesii)、鐵杉(Tsuga heterophylla)作為實驗材料,探
討不同的挖削位置及質量減損對彎曲各振態頻率之影響。以長、中、短三
種長度的試材代表低、中、高三個音域,並以試材全長的5%-45%為距離,
將9 個位置分別設置在不同試材上;每支試材只挖削一個位置。每個位置
以直徑5 ㎜、7 ㎜、9 ㎜的鑽頭及兩種鑽除深度(1 ㎝、2 ㎝),組合出4 種程
度的質量減損,觀察處理前後的頻率變化率。實驗結果顯示,影響第一振
態頻率最明顯的區域,位於試材全長40%~50%之間,影響第二振態頻率
最明顯的區域,位於試材全長25%~35%之間,影響第三振態頻率最明顯
的區域,位於試材全長15%~25%之間,不論試材的樹種及長度均有相似
的結果。此資訊可供有限元素分析方法模擬琴鍵調音之用,亦可歸納出木
琴琴鍵實務調音對應處理方法。各樹種在處理前後的頻率變化率,經分析
之後的結果顯示,非洲花梨木與鐵杉之間並無顯著差異,而花旗松與其他
兩種樹種具有顯著差異。
為了模擬琴鍵到達目標頻率時之輪廓外形,而使用有限元素分析方法模
擬木琴之調音過程。首先,必須驗證未調音試材的有限元素模型,是否能
夠代表試材結構之動態特性。材料選用非洲花梨木,分為長、中、短三種
長度代表低、中、高三個音域,以各柱狀試材經模態分析之各振態頻率,
做為修正有限元素模型之依據。本實驗之誤差範圍設定為目標頻率之±
10%,藉由各項參數漸次修改使有限元素分析模型之各振態頻率達到誤差範
II
圍內,始為有效模型。模型確定有效後,將低音域琴鍵之彎曲振態第1、2、
3 振態頻率的比值,設定為1:4:10,中音域為時之第1、2 振態頻率比值
設定為1:4,高音域則著重基頻;依照各振態之關鍵區域採用最恰當之挖
除比例,利用Solidworks 將琴鍵輪廓漸次修改到ANSYS 模擬結果達到目標
頻率之設定比值為止。依照完成後的琴鍵輪廓對實際材料進行粗調,粗調
後的琴鍵與琴鍵模型之各振態頻率誤差均能達達到在±10%誤差以內之要
求。
本研究在最後以挖削位置與質量減損的實驗,歸納出調音狀況處理方
法,將容許誤差設定在±5 音分,針對粗調後琴鍵之各種狀況採用適當對應
做法進行細調,以驗證處理方法之可行性。琴鍵經細調後的結果顯示,各
振態頻率誤差都在±5 音分內。
在證明前兩項實驗結果可行後,運用相同方法模擬61 鍵全組木琴中各
鍵之外形輪廓及建構出木琴琴鍵設計及調音製作業原則,配合調音對應處
理方法,可提供木琴業界或業餘製作者參考。
Finite element analysis (FEA) can be used on xylophone key tuning
simulation. In order to have an accurate tuning simulation, the crucial area of
each modal frequency, the mass loss of each drilling location, and the various
modal frequency changes of the keys should be verified.
This research selected Pterocarpus soyauxii as the test materials, because
it’s the common materials for making a wooden xylophone, and Pseudotsuga
menziesii, and Tsuga heterophylla were chose for comparison. The effects of
different drilling locations were discussed, and how the mass loss could affect a
modal frequency was analyzed. The test materials were categorized into low,
medium, and high ranges, as well as long, medium, and short three lengths.
The drilling depth could be 5%- 45% of the test material length. Each test
material was given nine drilling locations, but only one would be chosen. The
5 ㎜, 7 ㎜, and 9 ㎜ drills were used to create two drilling depths. There are a
total of four degrees of mass losses, and the frequency changes before and after
the drilling were recorded. The experiments revealed that all the test materials
had similar results regardless of tree species or material length. The most
significant areas that would affect the first, second, and third modal frequencies
were located at the 40-45%, 25-35%, and 15-25% of the material length,
respectively. This information is very useful for FEA tuning simulation, and the
practical xylophone tuning. The frequency change analysis showed that there
was no significant difference between Pterocarpus soyauxii and Tsuga
heterophylla, but there was a significant difference between Pseudotsuga
menziesii and the other two materials.
Before utilizing FEA on tuning simulation, it is necessary to confirm the
applicability of the model parameters. Pterocarpus soyauxii was selected as the
material, and there were three ranges and three lengths. The frequency ratio
was set at 1:4:10, and this ratio represented the frequency goal for the low
IV
range. The ratio for the medium range was set at 1:4. Regarding the high
range, the fundamental frequency was emphasized. Modal analysis was
conducted for each columnar material, and the finite element model
modification was based on the modal frequency data. The error range was set
at ±10%. Only when the parameters were modified and within the error range,
it could be a valid model. After the valid model was established, there was an
appropriate drilling depth in the crucial area of each modal frequency. The
xylophone keys were adjusted until the target frequency ratio was achieved.
Then, a coarse adjustment was taken in order to make all the modal frequency
errors to be within the range of ±10%. After analyzing the different drilling
locations and mass losses, this research proposed a practical tuning approach.
A fine adjustment was conducted after the coarse adjustment so that the
feasibility of the tuning method could be verified. The tolerance error was set
at ±5 cents. The fine-tuning process and the frequency changes were recorded.
The results revealed that all the error values of modal frequencies were within
the permissible range. By using the same method, a 60-key xylophone with its
own appearance could be made. The tuning method proposed by this research
can served as a reference for the xylophone industry and anyone who is
interested in xylophone tuning.
摘 要.........I
Abstract........III
目錄............ V
圖目錄........... VII
表目錄........... IX
壹、前 言........11
貳、文獻回顧.......13
一、音名、音階、音程與音分及和諧音.... 13
二、木琴的分類與發展................................13
三、木琴的調音與製作................................16
四、琴鍵之粗調與細調................................19
五、影響木琴音準的因子...... ........................20
(一)含水率....... ................................21
(二)塗裝......... ................................21
(三)局部質量改變...................................22
(四)溫度......... .................................23
六、有限元素分析(FEA)於振動模擬之應用..................23
参、材料與方法.....................................25
一、試驗材料.......................................26
(一)不同位置及質量減損對柱狀試材彎曲各振態頻率之影響..... .26
(二)電腦輔助工程(CAE)於琴鍵調音之應用.................28
二、試驗方法.......................................28
(一)不同位置及不同質量減損對柱狀試材彎曲各振態頻率之影響...28
(二)電腦輔助工程(CAE)於琴鍵調音之應用..................31
肆、結果與討論......................................37
一、不同位置及質量減損對柱狀試材彎曲各振態頻率之影響.......37
(一)試材彎曲振動第一、二、三振態之確認..................37
(一)相同的質量減損,挖削位置的改變對各振態頻率的影響.......39
(二)相同的挖削位置,不同的質量減損對各振態頻率的影響.......47
(三)調音狀況之對應處理................................51
(四)質量減損對樹種間影響差異之分析......................53
二、電腦輔助工程( CAE)於木琴琴鍵調音之應用...............59
(一)試材有限元素模型之有效性驗證........................59
(二)琴鍵粗調模擬與驗證................................62
(三)模式適用範圍與限制................................67
(四)琴鍵細調原則之應用結果.............................72
三、木琴琴鍵設計與調音之參考步驟........................76
(一)琴鍵尺寸之設計原則................................76
(二)調音實務作法.....................................77
(三)決定穿繩孔位置....................................79
伍、結 論...........................................80
參考文獻.............................................82
附 錄..............................................86

丁昭義 (1982) 木材塗裝與塗裝材料。林產工業1(1) : 92-96。
王松永 (1979) 木材尺寸安定性處理其對塗裝面耐久性之研究。台大農學院實驗林研究報告123 : 109-144。
王松永、丁昭義 (1984) 林產學(上冊)。pp.218-571。台灣商務印書館。台北。
王沛倫 (1987) 音樂辭典。pp.513-514。音樂與音響雜誌社。台北。
安藤由典 (1977) 樂器的音響學。鄭德淵2002譯。音樂之友社:pp.1-15
克麗絲汀‧安默兒(Christine Ammerk) (2001) 音樂辭典。pp.286-611。貓頭鷹出版社翻譯。台北。
林怡馨 (2007) 鐵琴片振動特性與聲音關聯性之探討。國立屏東科技大學機械工程研究所碩士論文。屏東。
吳榮順、曾毓芬、黃馨瑩 (2006) 亞太傳統打擊樂器特展。pp.42-162。國立傳統藝術中心。宜蘭。
許常惠等編校 (1982) 世界音樂大典。巨龍文化事業有限公司。台北。
許常惠 (1996) 實用音樂辭典4。pp.19-20。旺文社。台北。
陳精一、蔡國忠 (2000) 電腦輔助工程分析-ANSYS使用指南。pp.1-30。全華科技圖書。台北。
菅原明朗、李哲洋 (1979) 樂器圖解。pp.84-87。全音樂譜出版社。台北。
葉振綱 (2005) 西洋音樂與樂器。pp.144-146。風車圖書。台北。
葉小雲 (2008) 含水率、年輪傾斜角、塗裝對木琴琴鍵振動特性之影響。國立宜蘭大學自然資源研究所碩士論文。宜蘭。
黃彥三、陳欣欣 (1997) 木理傾斜角與含水率對樂器用材音響性質之影響。台灣林業科學。12(3): 355-361。
鄒茂雄 (1985) 木材塗裝。pp.9-36。淑馨出版社。台北。
廖偉廷 (2009) 木琴條聲音與振動關聯性及形狀變更之設計分析。國立屏東科技大學機械工程研究所碩士論文。屏東。
鄭德淵 (2003) 音樂的科學。pp.1-290。大陸書店。台北。
謝明憲 (2009) 和弦鐵琴片之聲音特性與設計分析。國立屏東科技大學機械工程研究所碩士論文。屏東。
Bork, I. (1995) Practical tuning of xylophone bars and resonators. Applied Acoustics 46: 103–127.
Bork, I., A. Chaigne, L. C. Trebuchet, M. Kosfelder, and D. Pillot. (1999) Comparison between modal analysis and finite element modeling of a marimba bar. Acoustica United with Acta Acustica, Vol. 85, pp. 258-266
, J., C. Santamaria. and J. A. Moral. (1999) Finite element analysis and experimental measurements of natural eigenmodes and random responses of wooden bars used in musical instruments. Applied Acoustics 56: 141–156.
Bucur‚ V. (1995) Acoustic of wood. pp.135-158. CRC press.
Brancheriau, L., H. Bailleres and C. Sales. (2006) Acoustic resonance of xylophone bars: experimental and analytic approach of frequency shift phenomenon during the tuning operation of xylophone bars. Wood science and Technology 40: 94-106.
Eslam, K.H. and A. H. Hemmasi. (2011) Nondestructive evaluation of the effect of hole diameter on young’s modulus of wood using flexural vibration. World Applied Sciences Journal 13(1): 66-72.
Haaheim, J. and A. Merkle. (1999) Acoustical studies of the marimba. Gustavus Adolphus College. Formal Lab Report. Experimental Modern Physics. PHY-305: 1-17
Henrique, L., and J. Antunes. (2003) Optimal Design and Physical Modelling of Mallet Percussion Instruments. Acustica/acta acustica, vol. 89 pp. 948-963
James, M., L. (1977) The Mysticism of the Marimba; a Detailed Acoustical and Cultural Study. La Grange, Illinois: Ludwig Drum Company. pp.8
Kollmann, F. (1940) Die mechanischen Eigenschaften verschieden feuchter Holzer im Temperaturbereich vo -100 bis +200 [degree] C. VDI-Forschungsheft NO. 403, VDI-Verlag, Berlin. Original not seen, cited in Principles of Wood sci. and Tech., Vol. 1, Solid Wood by F.F.P. Kollmann and W.A. Cote, Jr. Springer-Verlag, New York. 1968. pp.590.
Meinel, H. (1957) Regarding the sound quality of violins and a scientific basis for violin construction. J. Acoust. Soc. Am. 29: 817-822.
Ono, T. (1983) Effect of grain angle on dynamic mechanical properties of wood. J. Soc. Mater. Sci. Jpn. 32(352): 108-113.
Owolabi, G. M., A. S. J. Swamidas, and R. Seshadri. (2003) Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. J. Sound. Vib. 265: 1–22.
Petrolito, J. and K. A. Legge. (1997) Optimal undercuts for the tuning of percussion beams. J. Acoust. Soc. Am. 102: 2432-2437.
Masoud, S. M., A. Jarrah. and M. Al-maamory. (1998) Effect of crack depth on the natural frequency of a prestressed fixed-fixed beam. Journal of Sound and Vibration. 214 (2): 201-212.
Ramanamurthy, E.V.V. and K. Chandrasekaran. (2011) Vibration analysis on a composite beam to identify damage and damage severity using finite element method. International Journal of Engineering Science and Technology 7 (3): 5865-5888.
Schelleng, J. C. (1968) Acoustical effects of violin varnish. J. Acoust. Soc. Am. 44: 1175-1183.
Segerman, E. (2001) Some aspects of wood structure and function, CAS J. 4(3): 5-9.
Samer, M.(2006) Crack detection in stepped beam carrying slowly moving mass. Ph. D. dissertation, Univ of King Saud, Saudi Arabia.
Tang, R. C. and N. N. Hus. (1972) Dynamic Young’s moduli of wood related to moisture content . Wood Sic. 5 (1): 7-14.
Yoo, J. and T. D. Rossing. (2003) Vibrational modes of five–octave concert marimbas. Proceedings of the Stockholm Music Acoustics Conference 8: 6–9.
Zheng, D.Y. and N.J. Kessissoglou. (2004) Free vibration analysis of a cracked beam by finite element method. Journal of Sound and Vibration 273: 457–475.
中華百科全書 典藏版 (1983)2012年8月28日,取自:http://ap6.pccu.edu.tw/Encyclopedia/
Jeff La Favre (2007) Tuning a marimba bar and resonator. Retrieved August 5, 2012, from the World Wide Web:http://www.lafavre.us/tuning-marimba.htm
The New Grove Dictionary of Music and Musicians online. Retrieved August 5, 2012, from the World Wide Web:http://www.oxfordmusiconline.com/subscriber/;jsessionid=7752EFB421E81F4C1CAEAF17B73D16FA

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top