跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智捷
研究生(外文):Chih-Chieh Hsu
論文名稱:植物精油對白色念珠菌生物膜之影響
論文名稱(外文):Effects of Essential Oils on Candida albicans Biofilms
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:白色念珠菌生物膜沉香醇
外文關鍵詞:Candida albicansbiofilmlinalool
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白色念珠菌為具有雙形性的真菌,是人類主要的伺機性病原真菌之一,可引起黏膜及深層組織的感染。近年來研究指出白色念珠菌可以在許多植入性人工醫材上形成生物膜,而由於生物膜的構造與特性,使得抗藥性增加且有利於躲避宿主的免疫系統攻擊,進而導致高死亡率,因此尋求有效預防或對抗生物膜的新方法,做為替代抗生素或減少抗生素的使用量,是急待努力的方向之一。精油又稱為揮發油,是從植物萃取而來的油狀芳香液體,富含萜類化合物。許多精油已被證實具有抗細菌及真菌的能力,但其對於抗真菌生物膜的研究仍不多。本研究的目的,就是希望從植物精油中,篩選出可以抑制白色念珠菌生物膜的活性物質並探討其所影響之分子層次。篩選結果發現,花椒精油及其主要成分linalool具有抑制白色念珠菌生物膜形成及清除已生成24小時之白色念珠菌生物膜的能力;此外,linalool具有抑制白色念珠菌形成發芽管的能力。在分子作用機制方面,我們發現linalool可降低adhesin基因表現量,包含HWP1及ALS3;菌絲形成的主要調控路徑cAMP-PKA pathway中的CYR1及MAPK pathway中的CPH1,以及其共同上游RAS1之基因表現量均受到linalool的抑制。而與hyphae長時間維持相關的基因:UME6、HGC1及EED1,其表現量亦會受到linalool抑制。由本研究的結果,linalool具有做為抑制白色念珠菌生物膜所引起的感染的應用價值。
Biofilms are structured microbial communities in which the cells bind tightly to a surface and become embedded in a matrix of extracellular polymeric substances produced by these cells, and characteristically display a phenotype that is markedly different from that of planktonic cells. Candida albicans, the dimorphic yeast, is a major human fungal pathogen that causes both mucosal and deep tissue infections. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. Essential oils are aromatic oily liquids obtained from plant materials that are mainly composed of terpenes and some other non-terpene components. The essential oils of many aromatic plants are known for their antifungal properties, but their antibiofilm activity has not been studied extensively. The aim of this study is to investigate whether essential oils and its components could inhibit the development of C. albicans biofilms. In our screen system, biofilms were formed on microtiter plates and quantified by XTT reduction assay. After preliminary screening, several candidate essential oils and their major components were found to inhibit C. albicans biofilm formation and linalool was chosen for further study. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because this compound interferes with the morphological switch and biofilm formation of C. albicans.
中文摘要 1
Abstract 2
第一章、緒論 4
一、白色念珠菌 4
二、C. albicans的形態調控 6
三、群感效應與形態轉換 8
四、生物膜 11
五、C. albicans生物膜 13
六、抗真菌劑 16
七、抗生物膜的方法 18
八、植物精油 19
九、研究動機與目的 21
十、實驗架構與策略 23
第二章、材料與方法 24
一、實驗材料 24
1. 菌株 24
2. 培養基 24
3. 精油 24
4. 化學藥品與耗材 24
5. 儀器設備 25
二、實驗方法 26
1. Candida spp.之保存與培養 26
2. C. albicans生物膜之培養 26
2. C. albicans生物膜之偵測 27
3. 氣相層析質譜儀分析 27
4. 最低抑菌濃度及最低殺菌濃度測定 28
5. 殺菌時間試驗 28
6. 發芽管觀察 28
7. RNA萃取與即時定量PCR (quantitative real time-PCR) 29
8. 掃瞄式電子顯微鏡觀察 29
第三章、結果 31
一、抑制C. albicans生物膜形成之植物精油篩選結果 31
二、Candida spp. 對於linalool的感受性 31
三、殺菌時間曲線 32
四、Linalool對於C. albicans發芽管形成的影響 33
五、Linalool對C. albicans生物膜之影響 33
六、Linalool對於C. albicans生物膜相關基因表現之影響 34
第四章、討論 36
一、Linalool具有對抗C. albicans生物膜之潛力 36
二、Linalool具有抑制C. albicans菌絲形成以及長期維持的作用 37
三、成熟的C. albicans生物膜對於linalool仍具有感受性 38
四、Linalool抑制C. albicans的黏附能力 38
五、Linalool抑制C. albicans生物膜的作用機轉 39
六、Linalool的安全性探討 40
七、總結 41
第五章、參考文獻 42
第六章、圖表 57
表一、Real time-PCR 引子序列 57
表二、精油名稱與主要成份列表 58
表三、C. albicans對於精油成分的感受性 59
表四、Candida spp.對linalool及amphotericin B的感受性 60
圖一、精油對於C. albicans生物膜之影響 61
圖二、蓽澄茄精油GC/MS分析圖譜 62
圖三、玫瑰草精油GC/MS分析結果 63
圖四、花椒精油GC/MS分析結果 64
圖五、香茅精油GC/MS分析結果 65
圖六、香薷精油GC/MS分析結果 66
圖七、檸檬香茅精油GC/MS分析結果 67
圖八、化合物結構圖 68
圖九、精油成份對於C. albicans生物膜之影響 69
圖十、Linalool及amphotericin B對C. albicans的殺菌時間曲線 70
圖十一、Linalool抑制C. albicans發芽管的形成 71
圖十二、Linalool對於C. albicans生物膜之影響 72
圖十三、以掃描式電子顯微鏡觀察C. albicans生物膜 73
圖十四、Linalool對於C. albicans生物膜基因表現的影響 74
附圖一、調控C. albicans形態轉換的訊息傳遞途徑 75
附圖二、C. albicans菌絲誘導與維持之分子調控 76
附圖三、C. albicans生物膜發展過程示意圖 77

Ahmad, A., A. Khan, F. Akhtar, S. Yousuf, I. Xess, L.A. Khan, and N. Manzoor. 2011. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis. 30:41-50.
Al-Fattani, M.A., and L.J. Douglas. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 55:999-1008.
Alem, M.A., and L.J. Douglas. 2004. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother. 48:41-7.
Alem, M.A., M.D. Oteef, T.H. Flowers, and L.J. Douglas. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell. 5:1770-9.
Alviano, W.S., R.R. Mendonca-Filho, D.S. Alviano, H.R. Bizzo, T. Souto-Padron, M.L. Rodrigues, A.M. Bolognese, C.S. Alviano, and M.M. Souza. 2005. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol. 20:101-5.
Baillie, G.S., and L.J. Douglas. 1998. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother. 42:1900-5.
Baillie, G.S., and L.J. Douglas. 1999. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. 48:671-9.
Bainton, N.J., B.W. Bycroft, S.R. Chhabra, P. Stead, L. Gledhill, P.J. Hill, C.E. Rees, M.K. Winson, G.P. Salmond, G.S. Stewart, and et al. 1992. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene. 116:87-91.
Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils--a review. Food Chem Toxicol. 46:446-75.
Balkis, M.M., S.D. Leidich, P.K. Mukherjee, and M.A. Ghannoum. 2002. Mechanisms of fungal resistance: an overview. Drugs. 62:1025-40.
Ballabeni, V., M. Tognolini, S. Bertoni, R. Bruni, A. Guerrini, G.M. Rueda, and E. Barocelli. 2007. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacol Res. 55:23-30.
Banerjee, M., D.S. Thompson, A. Lazzell, P.L. Carlisle, C. Pierce, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell. 19:1354-65.
Bendel, C.M., D.J. Hess, R.M. Garni, M. Henry-Stanley, and C.L. Wells. 2003. Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med. 31:501-7.
Blankenship, J.R., and A.P. Mitchell. 2006. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 9:588-94.
Boles, B.R., M. Thoendel, and P.K. Singh. 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57:1210-23.
Braga, P.C., M. Alfieri, M. Culici, and M. Dal Sasso. 2007. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses. 50:502-6.
Braga, P.C., M. Culici, M. Alfieri, and M. Dal Sasso. 2008. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int J Antimicrob Agents. 31:472-7.
Braun, B.R., and A.D. Johnson. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 277:105-9.
Braun, B.R., D. Kadosh, and A.D. Johnson. 2001. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. Embo J. 20:4753-61.
Calderone, R.A., and W.A. Fonzi. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9:327-35.
Cao, Y.Y., Y.B. Cao, Z. Xu, K. Ying, Y. Li, Y. Xie, Z.Y. Zhu, W.S. Chen, and Y.Y. Jiang. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother. 49:584-9.
Carlisle, P.L., M. Banerjee, A. Lazzell, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2009. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A. 106:599-604.
Carlisle, P.L., and D. Kadosh. 2010. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot Cell. 9:1320-8.
Cassola, A., M. Parrot, S. Silberstein, B.B. Magee, S. Passeron, L. Giasson, and M.L. Cantore. 2004. Candida albicans lacking the gene encoding the regulatory subunit of protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot Cell. 3:190-9.
Chandra, J., D.M. Kuhn, P.K. Mukherjee, L.L. Hoyer, T. McCormick, and M.A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 183:5385-94.
Chen, G.H., D.H. Leung, and J.C. Hung. 2003. Biofilm in the sediment phase of a sanitary gravity sewer. Water Res. 37:2784-8.
Chen, H., and G.R. Fink. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20:1150-61.
Chen, H., M. Fujita, Q. Feng, J. Clardy, and G.R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A. 101:5048-52.
Chuang, K.C. 2007. 植物精油對白色念珠菌生物膜發展之影響. Vol. 碩士論文. 國立陽明大學.
Chung, M.J., K.W. Park, K.H. Kim, C.T. Kim, J.P. Baek, K.H. Bang, Y.M. Choi, and S.J. Lee. 2008. Asian plantain (Plantago asiatica) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase expression in vitro and in vivo and show hypocholesterolaemic properties in mice. Br J Nutr. 99:67-75.
Clinical and Laboratory Standards Institute. 2008. Reference Method For Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard: Third edition. M27-A3. Clinical and Laboratory Standards Institute, Wayne, Pa, USA.
Cloutier, M., R. Castilla, N. Bolduc, A. Zelada, P. Martineau, M. Bouillon, B.B. Magee, S. Passeron, L. Giasson, and M.L. Cantore. 2003. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol. 38:133-41.
Costerton, J.W., R.T. Irvin, and K.J. Cheng. 1981. The role of bacterial surface structures in pathogenesis. Crit Rev Microbiol. 8:303-38.
Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott. 1995. Microbial biofilms. Annu Rev Microbiol. 49:711-45.
Cowan, M.M. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev. 12:564-82.
Cremer, J., V. Vatou, and I. Braveny. 1999. 2,4-(hydroxyphenyl)-ethanol, an antioxidative agent produced by Candida spp., impairs neutrophilic yeast killing in vitro. FEMS Microbiol Lett. 170:319-25.
D'Auria, F.D., M. Tecca, V. Strippoli, G. Salvatore, L. Battinelli, and G. Mazzanti. 2005. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med Mycol. 43:391-6.
Décanis, N., K. Savignac, and M. Rouabhia. 2009. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. Cytokine. 45:132-40.
Dalleau, S., E. Cateau, T. Berges, J.M. Berjeaud, and C. Imbert. 2008. In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents. 31:572-6.
Davies, D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2:114-22.
Davis-Hanna, A., A.E. Piispanen, L.I. Stateva, and D.A. Hogan. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 67:47-62.
de Almeida, E.R., K.R. Rafael, G.B. Couto, and A.B. Ishigami. 2009. Anxiolytic and anticonvulsant effects on mice of flavonoids, linalool, and alpha-tocopherol presents in the extract of leaves of Cissus sicyoides L. (Vitaceae). J Biomed Biotechnol. 2009:274740.
Di Pasqua, R., G. Betts, N. Hoskins, M. Edwards, D. Ercolini, and G. Mauriello. 2007. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 55:4863-70.
Dismukes, W.E. 2000. Introduction to antifungal drugs. Clin Infect Dis. 30:653-7.
Dobretsov, S., H.U. Dahms, H. Yili, M. Wahl, and P.Y. Qian. 2007. The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol. 60:177-88.
Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881-90.
Donlan, R.M., and J.W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167-93.
Douglas, L.J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11:30-6.
Eberhard, A., A.L. Burlingame, C. Eberhard, G.L. Kenyon, K.H. Nealson, and N.J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 20:2444-9.
Edris, A.E. 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 21:308-23.
Enjalbert, B., and M. Whiteway. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell. 4:1203-10.
Fairn, G.D., K. Macdonald, and C.R. McMaster. 2007. A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem. 282:4868-74.
Fang, H.M., and Y. Wang. 2006. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol Microbiol. 61:484-96.
Feng, Q., E. Summers, B. Guo, and G. Fink. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol. 181:6339-46.
Filoche, S.K., K. Soma, and C.H. Sissons. 2005. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 20:221-5.
Fu, Y., A.S. Ibrahim, D.C. Sheppard, Y.C. Chen, S.W. French, J.E. Cutler, S.G. Filler, and J.E. Edwards, Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol. 44:61-72.
Fuqua, W.C., S.C. Winans, and E.P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 176:269-75.
Gallis, H.A., R.H. Drew, and W.W. Pickard. 1990. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 12:308-29.
Gan, B.S., J. Kim, G. Reid, P. Cadieux, and J.C. Howard. 2002. Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis. 185:1369-72.
Garcia-Sanchez, S., S. Aubert, I. Iraqui, G. Janbon, J.M. Ghigo, and C. d'Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 3:536-45.
Ghelardini, C., N. Galeotti, G. Salvatore, and G. Mazzanti. 1999. Local anaesthetic activity of the essential oil of Lavandula angustifolia. Planta Med. 65:700-3.
Ghosh, S., N. Howe, K. Volk, S. Tati, K.W. Nickerson, and T.M. Petro. 2010. Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol Med Microbiol. 60:63-73.
Giordani, R., P. Regli, J. Kaloustian, C. Mikail, L. Abou, and H. Portugal. 2004. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res. 18:990-5.
Gow, N.A., A.J. Brown, and F.C. Odds. 2002. Fungal morphogenesis and host invasion. Curr Opin Microbiol. 5:366-71.
Gozalbo, D., P. Roig, E. Villamon, and M.L. Gil. 2004. Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord. 4:117-35.
Gray, K.M., and J.R. Garey. 2001. The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology. 147:2379-87.
Gray, K.M., L. Passador, B.H. Iglewski, and E.P. Greenberg. 1994. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol. 176:3076-80.
Green, C.B., G. Cheng, J. Chandra, P. Mukherjee, M.A. Ghannoum, and L.L. Hoyer. 2004. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology. 150:267-75.
Grubb, S.E., C. Murdoch, P.E. Sudbery, S.P. Saville, J.L. Lopez-Ribot, and M.H. Thornhill. 2009. Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infect Immun. 77:3872-8.
Gudlaugsson, O., S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, L. Herwaldt, M. Pfaller, and D. Diekema. 2003. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis. 37:1172-7.
Hall, R.A., K.J. Turner, J. Chaloupka, F. Cottier, L. De Sordi, D. Sanglard, L.R. Levin, J. Buck, and F.A. Muhlschlegel. 2011. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot Cell. 10:1034-42.
Hammer, K.A., C.F. Carson, and T.V. Riley. 2004. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother. 53:1081-5.
Han, T.L., R.D. Cannon, and S.G. Villas-Boas. 2011. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 48:747-63.
Hancock, J.F. 2003. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 4:373-84.
Hemaiswarya, S., A.K. Kruthiventi, and M. Doble. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 15:639-52.
Henriques, M., M. Martins, J. Azeredo, and R. Oliveira. 2007. Effect of farnesol on Candida dubliniensis morphogenesis. Lett Appl Microbiol. 44:199-205.
Hogan, D.A. 2006. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell. 5:613-9.
Hogan, D.A., A. Vik, and R. Kolter. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:1212-23.
Hornby, J.M., E.C. Jensen, A.D. Lisec, J.J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K.W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 67:2982-92.
Hornby, J.M., and K.W. Nickerson. 2004. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother. 48:2305-7.
Johnson, D.I. 1999. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev. 63:54-105.
Kadosh, D., and A.D. Johnson. 2001. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol. 21:2496-505.
Kalemba, D., and A. Kunicka. 2003. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 10:813-29.
Kebaara, B.W., M.L. Langford, D.H. Navarathna, R. Dumitru, K.W. Nickerson, and A.L. Atkin. 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell. 7:980-7.
Khan, A., A. Ahmad, F. Akhtar, S. Yousuf, I. Xess, L.A. Khan, and N. Manzoor. 2010. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res Microbiol. 161:816-23.
Klepser, M.E., E.J. Wolfe, R.N. Jones, C.H. Nightingale, and M.A. Pfaller. 1997. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 41:1392-5.
Kojic, E.M., and R.O. Darouiche. 2004. Candida infections of medical devices. Clin Microbiol Rev. 17:255-67.
Kugler, S., T. Schurtz Sebghati, L. Groppe Eissenberg, and W.E. Goldman. 2000. Phenotypic variation and intracellular parasitism by histoplasma Capsulatum. Proc Natl Acad Sci U S A. 97:8794-8.
Kuhn, D.M., T. George, J. Chandra, P.K. Mukherjee, and M.A. Ghannoum. 2002. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 46:1773-80.
Kumamoto, C.A. 2002. Candida biofilms. Curr Opin Microbiol. 5:608-11.
Kumamoto, C.A., and M.D. Vinces. 2005. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 59:113-33.
Kumar, C.G., and S.K. Anand. 1998. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 42:9-27.
Kuroda, M., S. Nagasaki, and T. Ohta. 2007. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 59:425-32.
LaFleur, M.D., C.A. Kumamoto, and K. Lewis. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 50:3839-46.
Lambert, R.J., P.N. Skandamis, P.J. Coote, and G.J. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 91:453-62.
Lamfon, H., S.R. Porter, M. McCullough, and J. Pratten. 2003. Formation of Candida albicans biofilms on non-shedding oral surfaces. Eur J Oral Sci. 111:465-71.
Langford, M.L., A.L. Atkin, and K.W. Nickerson. 2009. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol. 4:1353-62.
Leberer, E., D. Harcus, I.D. Broadbent, K.L. Clark, D. Dignard, K. Ziegelbauer, A. Schmidt, N.A. Gow, A.J. Brown, and D.Y. Thomas. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 93:13217-22.
Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D.Y. Thomas, and K. Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol. 42:673-87.
Leroy, O., J.P. Gangneux, P. Montravers, J.P. Mira, F. Gouin, J.P. Sollet, J. Carlet, J. Reynes, M. Rosenheim, B. Regnier, and O. Lortholary. 2009. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med. 37:1612-8.
Letizia, C.S., J. Cocchiara, J. Lalko, and A.M. Api. 2003. Fragrance material review on linalool. Food Chem Toxicol. 41:943-64.
Lewis, R.E., H.J. Lo, Raad, II, and D.P. Kontoyiannis. 2002. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother. 46:1153-5.
Li, F., M.J. Svarovsky, A.J. Karlsson, J.P. Wagner, K. Marchillo, P. Oshel, D. Andes, and S.P. Palecek. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell. 6:931-9.
Lin, H.Y., C.T. Chen, and C.T. Huang. 2004. Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl. Environ. Microbiol. 70:6453-8.
Lingappa, B.T., M. Prasad, Y. Lingappa, D.F. Hunt, and K. Biemann. 1969. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science. 163:192-4.
Liu, H., J. Kohler, and G.R. Fink. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 266:1723-6.
Liu, P., B. Deng, C.A. Long, and X. Min. 2009. Effent of farnesol on orphogenesis in the fungal pathogen Penicillium expansum. In Annals of Microbiology. Vol. 59. 33-38.
Liu, Y., and S.G. Filler. 2011. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 10:168-73.
Lo, H.J., J.R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G.R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell. 90:939-49.
Longbottom, C.J., C.F. Carson, K.A. Hammer, B.J. Mee, and T.V. Riley. 2004. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J. Antimicrob. Chemother. 54:386-92.
Lorenz, M.C., J.A. Bender, and G.R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell. 3:1076-87.
Mah, T.F., B. Pitts, B. Pellock, G.C. Walker, P.S. Stewart, and G.A. O'Toole. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 426:306-10.
Maidan, M.M., L. De Rop, J. Serneels, S. Exler, S. Rupp, H. Tournu, J.M. Thevelein, and P. Van Dijck. 2005. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell. 16:1971-86.
Manefield, M., T.B. Rasmussen, M. Henzter, J.B. Andersen, P. Steinberg, S. Kjelleberg, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 148:1119-27.
Manohar, V., C. Ingram, J. Gray, N.A. Talpur, B.W. Echard, D. Bagchi, and H.G. Preuss. 2001. Antifungal activities of origanum oil against Candida albicans. Mol Cell Biochem. 228:111-7.
Martin, R., G.P. Moran, I.D. Jacobsen, A. Heyken, J. Domey, D.J. Sullivan, O. Kurzai, and B. Hube. 2011. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS One. 6:e18394.
Mateus, C., S.A. Crow, Jr., and D.G. Ahearn. 2004. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother. 48:3358-66.
McGeady, P., D.A. Logan, and D.L. Wansley. 2002. A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a cellular yeast form to a filamentous form. FEMS Microbiol Lett. 213:41-4.
Mireles, J.R., 2nd, A. Toguchi, and R.M. Harshey. 2001. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 183:5848-54.
Mitchell, A.P. 1998. Dimorphism and virulence in Candida albicans. Curr Opin Microbiol. 1:687-92.
Mondello, F., F. De Bernardis, A. Girolamo, A. Cassone, and G. Salvatore. 2006. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect Dis. 6:158.
Moran, C., C.A. Grussemeyer, J.R. Spalding, D.K. Benjamin, Jr., and S.D. Reed. 2010. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am J Infect Control. 38:78-80.
Mosel, D.D., R. Dumitru, J.M. Hornby, A.L. Atkin, and K.W. Nickerson. 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol. 71:4938-40.
Mukherjee, P.K., J. Chandra, D.M. Kuhn, and M.A. Ghannoum. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 71:4333-40.
Mukherjee, P.K., S. Mohamed, J. Chandra, D. Kuhn, S. Liu, O.S. Antar, R. Munyon, A.P. Mitchell, D. Andes, M.R. Chance, M. Rouabhia, and M.A. Ghannoum. 2006. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun. 74:3804-16.
Murillo, L.A., G. Newport, C.Y. Lan, S. Habelitz, J. Dungan, and N.M. Agabian. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell. 4:1562-73.
Nemecek, J.C., M. Wuthrich, and B.S. Klein. 2006. Global control of dimorphism and virulence in fungi. Science. 312:583-8.
Nemoto, K., K. Hirota, T. Ono, K. Murakami, D. Nagao, and Y. Miyake. 2000. Effect of Varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy. 46:111-5.
Nett, J., L. Lincoln, K. Marchillo, R. Massey, K. Holoyda, B. Hoff, M. VanHandel, and D. Andes. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother. 51:510-20.
Nett, J.E., A.J. Lepak, K. Marchillo, and D.R. Andes. 2009. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis. 200:307-13.
Nguefack, J., B.B. Budde, and M. Jakobsen. 2004. Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Lett Appl Microbiol. 39:395-400.
Nickerson, K.W., A.L. Atkin, and J.M. Hornby. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 72:3805-13.
Niu, C., and E.S. Gilbert. 2004. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol. 70:6951-6.
Nobile, C.J., and A.P. Mitchell. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 8:1382-91.
Nobile, C.J., J.E. Nett, D.R. Andes, and A.P. Mitchell. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell. 5:1604-10.
Nobile, C.J., H.A. Schneider, J.E. Nett, D.C. Sheppard, S.G. Filler, D.R. Andes, and A.P. Mitchell. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr Biol. 18:1017-24.
Odds, F.C. 1988. Candida and Candidosis: A Review and Bibliography. W.B. Saunders Company / Bailliere Tindall, London.
Odds, F.C., A.J. Brown, and N.A. Gow. 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11:272-9.
Oh, K.B., H. Miyazawa, T. Naito, and H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A. 98:4664-8.
Oh, S.H., G. Cheng, J.A. Nuessen, R. Jajko, K.M. Yeater, X. Zhao, C. Pujol, D.R. Soll, and L.L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology. 151:673-81.
Olofsson, A.C., M. Hermansson, and H. Elwing. 2005. Use of a quartz crystal microbalance to investigate the antiadhesive potential of N-acetyl-L-cysteine. Appl Environ Microbiol. 71:2705-12.
Park, S.N., Y.K. Lim, M.O. Freire, E. Cho, D. Jin, and J.K. Kook. 2012. Antimicrobial effect of linalool and alpha-terpineol against periodontopathic and cariogenic bacteria. Anaerobe. 18:369-72.
Parke, D.V., K.H.M.Q. Rahman, and R. Walker. 1974. The absorption, distribution and excretion of linalool in the rat. Biochemical Society Transactions. 2:612-615.
Peana, A.T., P.S. D'Aquila, F. Panin, G. Serra, P. Pippia, and M.D. Moretti. 2002. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine. 9:721-6.
Pfaller, M.A., and D.J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 20:133-63.
Phan, Q.T., P.H. Belanger, and S.G. Filler. 2000. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun. 68:3485-90.
Phan, Q.T., C.L. Myers, Y. Fu, D.C. Sheppard, M.R. Yeaman, W.H. Welch, A.S. Ibrahim, J.E. Edwards, Jr., and S.G. Filler. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5:e64.
Pinto, E., C. Pina-Vaz, L. Salgueiro, M.J. Goncalves, S. Costa-de-Oliveira, C. Cavaleiro, A. Palmeira, A. Rodrigues, and J. Martinez-de-Oliveira. 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 55:1367-73.
Piper, K.R., S. Beck von Bodman, and S.K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature. 362:448-50.
Prashar, A., I.C. Locke, and C.S. Evans. 2004. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 37:221-9.
Pyun, M.S., and S. Shin. 2006. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine. 13:394-400.
Ríos, J.L., and M.C. Recio. 2005. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 100:80-4.
Ramage, G., S. Bachmann, T.F. Patterson, B.L. Wickes, and J.L. Lopez-Ribot. 2002a. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 49:973-80.
Ramage, G., S.P. Saville, B.L. Wickes, and J.L. Lopez-Ribot. 2002b. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 68:5459-63.
Ramage, G., K. Vande Walle, B.L. Wickes, and J.L. Lopez-Ribot. 2001a. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 45:2475-9.
Ramage, G., K. VandeWalle, J.L. Lopez-Ribot, and B.L. Wickes. 2002c. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 214:95-100.
Ramage, G., K. Vandewalle, B.L. Wickes, and J.L. Lopez-Ribot. 2001b. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 18:163-70.
Rasooli, I., S. Shayegh, M. Taghizadeh, and S.D. Astaneh. 2008. Phytotherapeutic prevention of dental biofilm formation. Phytother Res. 22:1162-7.
Rocha, C.R., K. Schroppel, D. Harcus, A. Marcil, D. Dignard, B.N. Taylor, D.Y. Thomas, M. Whiteway, and E. Leberer. 2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 12:3631-43.
Roman, E., R. Alonso-Monge, Q. Gong, D. Li, R. Calderone, and J. Pla. 2009. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res. 9:942-55.
Rooney, P.J., and B.S. Klein. 2002. Linking fungal morphogenesis with virulence. Cell Microbiol. 4:127-37.
Rosenberg, E., K.H. Keller, and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol. 129:770-7.
Russell, C., and K.M. Lay. 1973. Natural history of Candida species and yeasts in the oral cavities of infants. Arch Oral Biol. 18:957-62.
Sato, T., T. Watanabe, T. Mikami, and T. Matsumoto. 2004. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull. 27:751-2.
Saville, S.P., A.L. Lazzell, C. Monteagudo, and J.L. Lopez-Ribot. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell. 2:1053-60.
Scheper, M.A., M.E. Shirtliff, T.F. Meiller, B.M. Peters, and M.A. Jabra-Rizk. 2008. Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. Neoplasia. 10:954-63.
Semighini, C.P., J.M. Hornby, R. Dumitru, K.W. Nickerson, and S.D. Harris. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol. 59:753-64.
Shank, E.A., and R. Kolter. 2009. New developments in microbial interspecies signaling. Curr Opin Microbiol. 12:205-14.
Sharkey, L.L., M.D. McNemar, S.M. Saporito-Irwin, P.S. Sypherd, and W.A. Fonzi. 1999. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol. 181:5273-9.
Shchepin, R., R. Dumitru, K.W. Nickerson, M. Lund, and P.H. Dussault. 2005. Biologically active fluorescent farnesol analogs. Chem Biol. 12:639-41.
Shin, S. 2003. Anti-Aspergillus activities of plant essential oils and their combination effects with ketoconazole or amphotericin B. Arch Pharm Res. 26:389-93.
Shirtliff, M.E., B.P. Krom, R.A. Meijering, B.M. Peters, J. Zhu, M.A. Scheper, M.L. Harris, and M.A. Jabra-Rizk. 2009. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 53:2392-401.
Smail, E.H., B.N. Cronstein, T. Meshulam, A.L. Esposito, R.W. Ruggeri, and R.D. Diamond. 1992. In vitro, Candida albicans releases the immune modulator adenosine and a second, high-molecular weight agent that blocks neutrophil killing. J Immunol. 148:3588-95.
Sobel, J.D. 1997. Vaginitis. N Engl J Med. 337:1896-903.
Soll, D.R. 2008. Candida biofilms: is adhesion sexy? Curr Biol. 18:R717-20.
Staab, J.F., S.D. Bradway, P.L. Fidel, and P. Sundstrom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 283:1535-8.
Stoldt, V.R., A. Sonneborn, C.E. Leuker, and J.F. Ernst. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16:1982-91.
Sudbery, P., N. Gow, and J. Berman. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12:317-24.
Sudbery, P.E. 2011. Growth of Candida albicans hyphae. Nat Rev Microbiol. 9:737-48.
Sundstrom, P., E. Balish, and C.M. Allen. 2002. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis. 185:521-30.
Suntharalingam, P., and D.G. Cvitkovitch. 2005. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 13:3-6.
Thomas, D.V. 2002. Aromatherapy: mythical, magical, or medicinal? Holist Nurs Pract. 16:8-16.
Thompson, D.S., P.L. Carlisle, and D. Kadosh. 2011. Coevolution of morphology and virulence in Candida species. Eukaryot Cell. 10:1173-82.
Tsao, C.C., Y.T. Chen, and C.Y. Lan. 2009. A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol. 46:126-36.
Tsuchimori, N., L.L. Sharkey, W.A. Fonzi, S.W. French, J.E. Edwards, Jr., and S.G. Filler. 2000. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect. Immun. 68:1997-2002.
Waters, C.M., and B.L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319-46.
Wennerberg, K., K.L. Rossman, and C.J. Der. 2005. The Ras superfamily at a glance. J Cell Sci. 118:843-6.
Wenzel, R.P. 1995. Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis. 20:1531-4.
Westwater, C., E. Balish, and D.A. Schofield. 2005. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell. 4:1654-61.
Wu, H., Z. Song, M. Hentzer, J.B. Andersen, S. Molin, M. Givskov, and N. Hoiby. 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 53:1054-61.
Xie, H., G.S. Cook, J.W. Costerton, G. Bruce, T.M. Rose, and R.J. Lamont. 2000. Intergeneric communication in dental plaque biofilms. J Bacteriol. 182:7067-9.
Zeidler, U., T. Lettner, C. Lassnig, M. Muller, R. Lajko, H. Hintner, M. Breitenbach, and A. Bito. 2009. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res. 9:126-42.
Zhao, X., K.J. Daniels, S.H. Oh, C.B. Green, K.M. Yeater, D.R. Soll, and L.L. Hoyer. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology. 152:2287-99.
Zhao, X., S.H. Oh, K.M. Yeater, and L.L. Hoyer. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology. 151:1619-30.
Zheng, X., and Y. Wang. 2004. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23:1845-56.
Zibafar, E., S.J. Hashemi, F. Zaini, H. Zeraati, S. Rezaie, and P. Kordbacheh. 2009. Inhibitory effect of farnesol on biofilm formation by Candida tropicalis. Daru. 17:19-23.
Zore, G.B., A.D. Thakre, S. Jadhav, and S.M. Karuppayil. 2011. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine. 18:1181-90.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊