|
VIII: Reference 1. Williams, K.P., et al., Phylogeny of gammaproteobacteria. Journal of bacteriology, 2010. 192(9): p. 2305-2314. 2. Kaper, J.B., J.P. Nataro, and H.L.T. Mobley, Pathogenic Escherichia coli. Nature Reviews Microbiology, 2004. 2(2): p. 123-140. 3. Nataro, J.P. and J.B. Kaper, Diarrheagenic escherichia coli. Clinical Microbiology Reviews, 1998. 11(1): p. 142-201. 4. Orskov, I., et al., Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriological reviews, 1977. 41(3): p. 667. 5. Clermont, O., S. Bonacorsi, and E. Bingen, Rapid and Simple Determination of theEscherichia coli Phylogenetic Group. Applied and Environmental Microbiology, 2000. 66(10): p. 4555-4558. 6. Riley, L.W., et al., Hemorrhagic colitis associated with a rare Escherichia coli serotype. New England Journal of Medicine, 1983. 308(12): p. 681-685. 7. Pirro, F., et al., Neutralizing antibodies against Shiga-like toxins from Escherichia coli in colostra and sera of cattle. Veterinary microbiology, 1995. 43(2-3): p. 131-141. 8. Naylor, S.W., D.L. Gally, and J. Christopher Low, Enterohaemorrhagic E. coli in veterinary medicine. International journal of medical microbiology, 2005. 295(6-7): p. 419-441. 9. Frankel, G. and A.D. Phillips, Attaching effacing Escherichia coli and paradigms of Tir‐triggered actin polymerization: getting off the pedestal. Cellular microbiology, 2008. 10(3): p. 549-556. 10. Louise, C.B. and T.G. Obrig, Specific interaction of Escherichia coli 0157: H7-derived Shiga-like toxin II with human renal endothelial cells. Journal of Infectious Diseases, 1995. 172(5): p. 1397. 11. Richardson, S., et al., Experimental verocytotoxemia in rabbits. Infection and immunity, 1992. 60(10): p. 4154-4167. 12. Schmidt, H., H. Karch, and L. Beutin, The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli [alpha]-hemolysin family. FEMS microbiology letters, 1994. 117(2): p. 189-196. 13. Zhang, X., et al., Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. Journal of Infectious Diseases, 2000. 181(2): p. 664-670. 14. Frank, C., et al., Epidemic profile of Shiga-toxin–producing Escherichia coli O104: H4 outbreak in Germany. New England Journal of Medicine, 2011. 365(19): p. 1771-1780. 15. Lee, A.K., C.S. Detweiler, and S. Falkow, OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. Journal of bacteriology, 2000. 182(3): p. 771-781. 16. Deng, W., et al., Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(10): p. 3597. 17. Winstanley, C. and C.A. Hart, Type III secretion systems and pathogenicity islands. Journal of medical microbiology, 2001. 50(2): p. 116-126. 18. Gal‐Mor, O. and B.B. Finlay, Pathogenicity islands: a molecular toolbox for bacterial virulence. Cellular microbiology, 2006. 8(11): p. 1707-1719. 19. Sekiya, K., et al., Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proceedings of the National Academy of Sciences, 2001. 98(20): p. 11638. 20. Rumer, L., et al., Dissemination of pheU-and pheV-located genomic islands among enteropathogenic (EPEC) and enterohemorrhagic (EHEC) E. coli and their possible role in the horizontal transfer of the locus of enterocyte effacement (LEE). International journal of medical microbiology, 2003. 292(7-8): p. 463-475. 21. Jarvis, K.G. and J.B. Kaper, Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infection and immunity, 1996. 64(11): p. 4826-4829. 22. Kenny, B., et al., Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell, 1997. 91(4): p. 511-520. 23. Sperandio, V., et al., Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Molecular microbiology, 2000. 38(4): p. 781-793. 24. Jarvis, K.G., et al., Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proceedings of the National Academy of Sciences, 1995. 92(17): p. 7996. 25. Haack, K.R., et al., Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infection and immunity, 2003. 71(1): p. 384-392. 26. Tree, J.J., et al., Controlling injection: regulation of type III secretion in enterohaemorrhagic< i> Escherichia coli. Trends in microbiology, 2009. 17(8): p. 361-370. 27. Elliott, S.J., et al., The Locus of Enterocyte Effacement (LEE)-Encoded Regulator Controls Expression of Both LEE-and Non-LEE-Encoded Virulence Factors in Enteropathogenic and EnterohemorrhagicEscherichia coli. Infection and immunity, 2000. 68(11): p. 6115-6126. 28. Barba, J., et al., A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. Journal of bacteriology, 2005. 187(23): p. 7918-7930. 29. Zhang, L., et al., Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157: H7. Infection and immunity, 2004. 72(12): p. 7282-7293. 30. Lio, J.C.W. and W.J. Syu, Identification of a negative regulator for the pathogenicity island of enterohemorrhagicEscherichia coli O157: H7. Journal of biomedical science, 2004. 11(6): p. 855-863. 31. Tsai, N.P., et al., Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157: H7. Biochemical Journal, 2006. 393(Pt 2): p. 591. 32. Roe, A., D. Hoey, and D. Gally, Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli 0157. Biochemical Society Transactions, 2003. 31(1): p. 98-103. 33. Shaw, R.K., et al., Interaction of enteropathogenic Escherichia coli with human intestinal mucosa: role of effector proteins in brush border remodeling and formation of attaching and effacing lesions. Infection and immunity, 2005. 73(2): p. 1243-1251. 34. Daniell, S.J., et al., The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cellular microbiology, 2001. 3(12): p. 865-871. 35. Saier, M.H., Evolution of bacterial type III protein secretion systems. Trends in microbiology, 2004. 12(3): p. 113-115. 36. Frankel, G., et al., Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Molecular microbiology, 1998. 30(5): p. 911-921. 37. Daniell, S.J., et al., 3D structure of EspA filaments from enteropathogenic Escherichia coli. Molecular microbiology, 2003. 49(2): p. 301-308. 38. Chiu, H.J., W.S. Lin, and W.J. Syu, Type III secretion of EspB in enterohemorrhagic Escherichia coli O157: H7. Archives of microbiology, 2003. 180(3): p. 218-226. 39. Gauthier, A., J.L. Puente, and B.B. Finlay, Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infection and immunity, 2003. 71(6): p. 3310-3319. 40. Büttner, D. and U. Bonas, Port of entry–the type III secretion translocon. Trends in microbiology, 2002. 10(4): p. 186-192. 41. Akeda, Y. and J.E. Galán, Chaperone release and unfolding of substrates in type III secretion. Nature, 2005. 437(7060): p. 911-915. 42. Delahay, R.M., et al., Functional analysis of the enteropathogenic Escherichia coli type III secretion system chaperone CesT identifies domains that mediate substrate interactions. Molecular microbiology, 2002. 43(1): p. 61-73. 43. Wainwright, L.A. and J.B. Kaper, EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Molecular microbiology, 1998. 27(6): p. 1247-1260. 44. Neves, B.C., et al., CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infection and immunity, 2003. 71(4): p. 2130-2141. 45. Creasey, E.A., et al., CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology, 2003. 149(12): p. 3639. 46. Su, M.S.W., et al., Gene l0017 encodes a second chaperone for EspA of enterohaemorrhagic Escherichia coli O157: H7. Microbiology, 2008. 154(4): p. 1094-1103. 47. Ku, C.P., et al., Identification of a third EspA-binding protein that forms part of the type III secretion system of enterohemorrhagic Escherichia coli. Journal of Biological Chemistry, 2009. 284(3): p. 1686-1693. 48. Wilharm, G., et al., On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion. International journal of medical microbiology, 2007. 297(1): p. 27-36. 49. Yip, C.K., B.B. Finlay, and N.C.J. Strynadka, Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nature structural &; molecular biology, 2004. 12(1): p. 75-81. 50. Phan, J., B.P. Austin, and D.S. Waugh, Crystal structure of the Yersinia type III secretion protein YscE. Protein science, 2005. 14(10): p. 2759-2763. 51. Delahay, R.M., et al., The Coiled-coil Domain of EspA Is Essential for the Assembly of the Type III Secretion Translocon on the Surface of EnteropathogenicEscherichia coli. Journal of Biological Chemistry, 1999. 274(50): p. 35969-35974. 52. Creasey, E.A., et al., Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology, 2003. 149(8): p. 2093-2106. 53. Herring, C.D., J.D. Glasner, and F.R. Blattner, Gene replacement without selection: regulated suppression of amber mutations in< i> Escherichia coli. Gene, 2003. 311: p. 153-163. 54. Pallen, M., S. Beatson, and C. Bailey, Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC microbiology, 2005. 5(1): p. 9. 55. Plé, S., et al., Cochaperone interactions in export of the type III needle component PscF of Pseudomonas aeruginosa. Journal of bacteriology, 2010. 192(14): p. 3801-3808. 56. Plano, G.V. and S.C. Straley, Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis. Journal of bacteriology, 1995. 177(13): p. 3843-3854. 57. Quinaud, M., et al., The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2005. 280(43): p. 36293-36300. 58. Sun, P., et al., Structural Characterization of the< i> Yersinia pestis Type III Secretion System Needle Protein YscF in Complex with Its Heterodimeric Chaperone YscE/YscG. Journal of molecular biology, 2008. 377(3): p. 819-830. 59. Roe, A.J., et al., Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157: H7 is controlled at the posttranscriptional level. Infection and immunity, 2003. 71(10): p. 5900-5909. 60. Joung, J.K., E.I. Ramm, and C.O. Pabo, A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proceedings of the National Academy of Sciences, 2000. 97(13): p. 7382.
|