跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳桂榕
研究生(外文):Gui-Rong Chen
論文名稱:使用高壓製程之50mA雙相脈波電刺激晶片
論文名稱(外文):A 50mA Biphasic Pulse Stimulation Chip Using High-Voltage Process
指導教授:薛雅馨薛雅馨引用關係
指導教授(外文):Ya-Hsin Hsueh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與光電工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:55
中文關鍵詞:高電壓製程技術電流式數位類比轉換器雙相脈波電刺激晶片高電壓數位類比轉換器
外文關鍵詞:High-voltage process techniqueHigh-voltage DACCurrent-steering DACBiphasic Pulse Stimulate Chip
相關次數:
  • 被引用被引用:1
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文使用TSMC 0.25-μm HV mixed signal Based BCD 2.5/5/7/12/20/24/40/45/60V的製程技術,實現雙相脈波電刺激晶片,藉以縮減傳統電刺激器中,需要透過高功率元件組成的升壓電路,所造成的龐大體積。在此電刺激器架構中,將規劃適當的架構解決消耗功率及高電壓電晶體(high-voltage MOS)的面積消耗問題,其中包含8位元高電壓數位類比轉換器,控制電刺激輸出所需之電流量,並且採用分段電流模式(segmented current mode)的結構,6位元MSBs 熱碼式及2位元 LSBs二階權狀式達到高線性度。另外,由於本篇論文使用5/30/60V做為供應電源,會使得操作在低電壓與高電壓電路之間產生線性度偏移,因此提出電壓限制技巧,用以提高電刺激器輸出值的線性度。
在電路模擬方面,將利用HSPICE進行模擬,其模擬結果顯示,陽極最大輸出電流(Ian,max)與陰極最大輸出電流(Ica,max)分別為49.98mA及50.03mA;而陽極最大的微分非線性(DNLan,max)與積分非線性誤差(INLan,max)分別為-0.12LSB及0.51LSB;陰極輸出電流最大的微分非線性(DNLca,max)與積分非線性誤差(INLca,max)分別為0.19 LSB及-0.28 LSB。另外,電刺激頻率(TP)為24.9Hz,而陽極電刺激時間(Ta)與陰極電刺激時間(Tc)分別為300.08μs及300.05μs。
This study used TSMC 0.25-um HV mixed signal Based BCD 2.5/5/7/12/20/24/40/45/60V process to implement the Biphasic Pulse Stimulation Chip ,which aimed to reduce the large volume caused by the high-power components of booster circuit in traditional electric stimulator. In this electrical stimulator architecture, a suitable structure was planed to solve the problem with power consumption and area consumption caused by high-voltage transistors. The structure contained 8-bit high-voltage digital-to-analog converter to control any intensity of output current in electrical stimulation. It also taken segmented current mode structure, 6-bit MSBs thermomeder-coded and 2-bit LSBs binary-weighted to achieve high linearity. Furthermore, since this study utlizied 5/30/60V as power supply, linearity offset may occur between low-voltage circuit and high-voltage circuit. Therefore voltage limiting technique was proposed to increase the linearity of output value from the electrical stimulator.
In circuit simulation, we apply for HSPICE to simulation. The simulation result showed that, the maximum output current of anodic(Ian,max) and cathodic(Ica,max) were 49.98mA and 50.03mA respectively. The maximum differential nonlinearity(DNLan,max) and integral nonlinearity(INLan,max) of anodic were -0.12 LSB and 0.51 LSB respectively. The maximum differential nonlinearity(DNLca,max) and integral nonlinearity(INLca,max) of cathodic were -0.19 LSB and 0.28 LSB respectively. In addition, the frequency of electrical stimulation (TP) was 24.9Hz, the stimulation duration of anodic(Ta) and cathodic(Tc) were 300.08μs and 300.05μs respectively.
中文摘要 ----------------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------------- iv
表目錄 ----------------------------------------------------------------------------- vi
圖目錄 ----------------------------------------------------------------------------- vii
一、 緒論----------------------------------------------------------------------- 1
1.1 研究動機----------------------------------------------------------------- 1
1.2 電刺激-------------------------------------------------------------------- 1
1.2.1 電刺激基本原理-------------------------------------------------------- 1
1.2.2 電刺激相關應用-------------------------------------------------------- 2
1.3 研究目的----------------------------------------------------------------- 3
1.4 論文大綱----------------------------------------------------------------- 4
二、 醫療電刺激系統-------------------------------------------------------- 5
2.1 電刺激文獻回顧-------------------------------------------------------- 5
2.2 系統架構規劃----------------------------------------------------------- 5
2.3 TSMC 0.25-μm HV mixed signal Based BCD 2.5/5/7/12/20/ 24/40/45/60V 製程介紹 --------------------------------------------- 6
2.4 高電壓數位類比轉換器設計考量----------------------------------- 7
三、 高電壓電流式數位類比轉換器-------------------------------------- 9
3.1 架構簡介----------------------------------------------------------------- 9
3.2 8位元電流式數位類比轉換器部分--------------------------------- 9
3.2.1 6位元MSBs溫度計碼數位類比轉換器----------------------------- 11
3.2.2 2位元LSBs二階權重式數位類比轉換器-------------------------- 18
3.2.3 偏壓電路----------------------------------------------------------------- 20
3.2.4 8位元電流式數位類比轉換器--------------------------------------- 24
3.3 高電壓驅動電路-------------------------------------------------------- 25
3.4 高電壓電流式數位類比轉換器模擬結果-------------------------- 29
四、 雙相脈波產生器-------------------------------------------------------- 32
4.1 雙相脈波產生器簡介-------------------------------------------------- 32
4.2 雙相脈波產生器架構-------------------------------------------------- 33
4.2.1 高電壓電流鏡----------------------------------------------------------- 34
4.2.2 雙相脈波產生器之高電壓驅動電路-------------------------------- 35
4.2.3 脈波寬度控制電路----------------------------------------------------- 36
4.3 雙相脈波產生器佈局前模擬結果----------------------------------- 40
4.4 雙相脈波產生器佈局後模擬結果----------------------------------- 44
4.5 雙相脈波電刺激晶片文獻比較-------------------------------------- 47
五、 結論與未來展望-------------------------------------------------------- 49
5.1 結論----------------------------------------------------------------------- 49
5.2 未來展望----------------------------------------------------------------- 49
參考文獻 ----------------------------------------------------------------------------- 52
[1]S. Kitchen,“ Electrotherapy Evidence-Based Practice,” Churchill Livingstone, New York, 11 ed., 2002.
[2]X. Liu, A. Demosthenous and N. Donaldson,“ An integrated stimulator with DC-isolation and fine current control for implanted nerve tripoles,” IEEE J. of Solid-State Cir., vol. 46, pp. 1701-1714, July 2011.
[3]L.S. Gan, A. Prochazka, T.D. Bornes, A.A. Denington and K.M. Chan,“ A new means of transcutaneous coupling for neural prostheses,” IEEE Trans. Biomed. Eng., vol. 54, pp. 509-517, Mar. 2007.
[4]C.L. Chang, Z. Jin, and A.C. Cheng,“ Predicting end-point locomotion from neuromuscular activities of people with spina bifida: a self-organizing and adaptive technique for future implantable and non-invasive neural prostheses,” in Proc. 30th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS), Aug. 2008, pp. 4203-4207, 2008.
[5]R. Davoodi, C. Urata, M. Hauschild, M. Khachani and G.E. Loeb,“ Model-based development of neural prostheses for movement,” IEEE Trans. Biomed. Eng., vol. 54, pp. 1909-1918, Nov. 2007.
[6]P.R. Troyk, G. DeMichele and D. Detlefsen,“ Modular VLSI electronic design for implantable neural prostheses,” in Proc. 24th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS), Oct. 2002, vol. 3, pp. 2063-2065, 2002.
[7]L.R. Sheffer and J. Chae,“ Neuromuscular electrical stimulation in neurorehabilitation,” Muscle Nerve, vol. 35, pp. 562-590, Feb. 2007.
[8]蕭又滋,2004,植入式功能性微電刺激系統,國立中山大學電機工程學系,碩士論文。
[9]T. Yamasawa, M. Yoshimura and M. Toriu, “Transcutaneous electric nerve stimulator,” U.S. patent 5048523, Sep. 17, 1991.
[10]P. Wall and R. Melzack,“ Neural mechanisms which discriminate events on the skin,” IEEE Transaction on Information Theory, vol. 8, pp. 120-125, 1962.
[11]蔡昌佑,2011,多功能穴道刺激整合平台,南台科技大學電機工程研究所,碩士論文。
[12]W. Hao, H. Zhu, H.Zhang and B. Tian,“ Study on a mechanical acupuncture instrument with computer aided controlled,” in Proc. 2005 27th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS), pp. 4259-4262, 2005.
[13]P. Wall and R. Melzack,“ Neural mechanisms which discriminate events on the skin”, IRE Transactions on Information Theory, vol. 8, pp. 120-125, Feb. 1962.
[14]K. Stegath, N. Sharma, C. M. Gregory and W. E. Dixon,“ An extremum seeking method for non-isometric neuromuscular electrical stimulation,” in Proc. IEEE Informational Conf., Systems, Man and Cybernetics ISIC. , pp. 2528-2532, Oct. 2007.
[15]B.T. Ann, J.J. Chen, M.S. Ju,“ Implementation of an adaptive fuzzy controller for FES-cycling system”, in Proc. of the 19th Annual International Conf. of the IEEE, Engineering in Medicine and Biology Society, vol. 3, pp. 1119-1120, 1997.
[16]張毅,2008,可變動調頻電刺激系統及應用於生理適應性之評估, 國立成功大學電機工程學系,碩士論文。
[17]M. Alfaro, I. Chairez and L. Nino de Rivera, ”Adaptive multi-channel portable stimulator based on PWM: a tool for micro-stimulation using multi-array electrodes,” in Proc. 8th Int. Conf. Electrical Engineering, Computing Science and Automatic Control (CCE 2011), Oct. 2011, pp. 1-6, 2011.
[18]J. Vidal and M. Ghovanloo,“ Towards a switched-capacitor based stimulator for efficient deep-brain stimulation,” in Proc. 32nd Annu. Int. Conf. IEEE EMBS, Buenos Aires, pp. 2927-2930, Sep. 2010.
[19]Z.V. Laguna, E. Cardie, L.I. Garay and P.R. Hernandez,“ Electrical stimulator for surface nerve stimulation by using modulated pulses,” in Proc. PAN American Health Care Exchange (PAHCE), Apr. 2011, pp. 77-82, 2011.
[20]M. Cheney, D. Isaacson, and J. C. Newell,“ Electrical impedance tomography,” Society for Industrical and Applied Mathematics (SIAM) Rev., vol. 41, pp. 85-101, no. 1, Mar. 1999.
[21]E. Zheng, S. Shao, and J.G.Webster, "Impedance of skeletal muscle from 1 Hz to 1MHz," IEEE Trans. Biomed. Eng., vol. 35, pp. 649-651, June 1984.
[22]D.C. Barber and B.H. Brown, “Applied potential tomography”, J.Phys.E: Sci. Instrum., vol. 17, pp. 723-733, Sep. 1984.
[23]H.P. Schwan,“Electrical properties of tissue and cell suspensions,” Adv. Biol. Med. Phys., vol. 5, pp. 147-209, September 1957.
[24]T. Watanabe, R. Futami, N. Hoshimiya and Y. Handa,“ An approach to a muscle model with a stimulus frequency-force relationship for FES applications,” IEEE Trans. Rehabil. Eng., vol.7, pp. 12-18, Mar. 1999.
[25]林良式,2003,中頻與低頻經皮神經電刺激系統之研製, 國立成功大學電機工程學系,碩士論文。
[26]Van den Bosch, M. Borremans, M. Steyaert and W. Sansen,“ A 10-bit 1GSample/s Nyquist current-steering CMOS D/A converter,“ IEEE J. Solid-state circuit, vol. 36, pp. 315-323 , May, 2001.
[27]A. Van den Bosch and M. Borremas,“ A 12-bit 200MHz low glitch CMOS D/A converter,” in Proc. 1998 IEEE Custom Integrated Circuits Conf. (CICC), May 1998, pp. 249-252, 1998.
[28]B. J. Tesch and J. C. Garcia,“ A low glitch 14-b 100MHz D/A converter,” IEEE J. Solid-State Circuits, vol. 32, pp. 249-252, Sep. 1997.
[29]黃素鈴,2008,電流導相式數位類比轉換器之設計及其線性度內建自我測試,,國立成功大學電機工程學系,碩士論文。
[30]D. Mercer,” A 16-b D/A converter with increased spurious free dynamic range”, IEEE J. Solid –state Circuit, vol. 26, pp. 1180-1181, Oct. 1994.
[31]吳定中,韓闕, 微電子電路I, 2004。
[32]J. Bastor, A. M. Marques, M. S. J. Steyaert and W. Sansen,“ A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J.Solid-state Cir., vol. 33, pp. 1959-1969, Dec. , 1998.
[33]黃弘一,類比積體電路設計實習,混和訊號式積體電路設計聯盟,2003。
[34]R.K. Shepherd, N. Linahan, J. Xu, G. M. Clark and S. Araki,“ Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli,” Acta Otolaryngologica, vol. 119, no. 6, pp. 674-684, 1999.
[35]H. Chung, T. Lehmann and Y. Yang,“ Implantable stimulator for bipolar stimulation without charge balancing circuits,” in Proc. 2010 IEEE Biomed. Cir. and System Conf., pp. 202-205, Nov. 2010.
[36]E. K. F. Lee and A. Lam,“ A matching technique for biphasic stimulation pulse,” in Proc. IEEE International Symposium on Circuits and System, 2007. ISCAS 2007, pp. 817-820, May 2007.
[37]C.-C. Chen, K.-T. Tang,“ A 12V-500uA neuron stimulator with current calibration mechanism in 0.18um standard CMOS process,” in Proc. 2010 IEEE Biomed. Cir. and systems Conf., pp. 57-60, Nov. 2011.
[38]S. Guo and H. Lee,“ Biphasic-current-pulse self-calibration techniques for monopolar current stimulation,” in Proc. IEEE International Symposium on Circuits and System, 2007.ISCAS 2007, pp. 61-64, Nov. 2009.
[39]E. K. F. Lee, R. Dal, N. Reeves and X. Yun,“ A 36V biphasic stimulator with electrode monitoring circuit,” in Proc. IEEE International Symposium on Circuits and System, 2012. ISCAS 2012, pp. 1087-1090, May 2012.
[40]U. Bihr, T. Ungru, H. Xu, J. Anders, J. Becker and M. Ortmanns,“ A bidrectional neural interface with a HV stimulator and a LV neural amplifier,” in Proc. IEEE International Symposium on Circuits and System, 2013. ISCAS 2013, pp. 401-404, May 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top