跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林景和
研究生(外文):Ching-Ho Lin
論文名稱:腐植酸對土壤、磷礦石及鳥糞石養分有效性和作物養分吸收與錳毒害緩解之影響
論文名稱(外文):Influence of humic acid on the nutrient availability of soil, rock phosphate and guano, the nutrient uptake and alleviation of manganese toxicity of plants
指導教授:鍾仁賜鍾仁賜引用關係
指導教授(外文):Ren-Shih Chung, Ph. D.
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:145
中文關鍵詞:腐植酸磷礦石鳥糞石土壤養分錳毒害
外文關鍵詞:humic acidphosphate rockguanosoilnutrientmanganese toxicity
相關次數:
  • 被引用被引用:4
  • 點閱點閱:958
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
腐植酸是土壤腐植質中含量最多的重要組成,而有機質肥料在土壤中轉化亦會產生腐植酸,故其在作物栽培上對土壤、肥料及作物等影響扮演重要角色。近年國內無論有機生產或慣行農耕,甚多以天然磷礦粉為磷肥者,但磷礦粉溶解度低,研究指出添加有機物或腐植質可增加磷有效性,但並未探討腐植酸與其他有機酸共存時對磷礦粉溶解之影響。另外,強酸性土壤佔台灣耕土中相當大的比例,在強酸性土壤中作物有金屬毒害之虞,是否可利用腐植酸緩解亦待探究,因此,本研究旨在探討(1)腐植酸對不同土壤中養分釋出效應;(2)腐植酸或其與有機酸共存時對難溶之磷礦石與鳥糞石中養分溶出之影響;以及(3)腐植酸對作物養分吸收、生長及錳毒害之緩解作用,期供有機生產或慣行農耕應用。本研究依目的分成三個試驗,其試驗方法及結果如下:
試驗一為腐植酸對土壤養分釋出之效應:以pH 7.0之腐植酸溶液處理鳳光里系、平鎮系及鹿港系等三種不同土壤,使土壤含25 g kg-1之腐植酸組成三處理,並分別以未處理者為對照,在250C恆溫箱及100 rpm迴旋振盪下,孵育60天後過濾,測定濾液中養分,殘渣另做固態X光繞射分析及電泳超過濾分析殘渣中有效性及潛在性磷與鉀,比較各處理間養分含量差異。結果顯示,腐植酸可提高石灰質或強酸性土壤中磷與鉀之有效性及石灰質土壤中鈣與鎂之有效性;而僅能提高強酸性土壤中之鎂有效性但對鈣則否;腐植酸亦顯著增加土壤鐵與鋁之溶出。
試驗二為腐植酸或其與有機酸共存時對磷礦石及鳥糞石中養分溶出之影響:將不同羧基數之三種有機酸(甲酸、草酸及檸檬酸),以其添加腐植酸與否,及以鹽酸及去離子水為萃取液,在調整其pH與否之情況,並均以中性腐植酸為對照萃取液,合計九種萃取液,分別加於磷礦石及鳥糞石各組成九處理,在250C恆溫箱及150 rpm迴旋振盪反應20小時後過濾,分析及比較各處理之磷、鈣、鎂溶出量。結果顯示,中性腐植酸自磷礦石中溶出磷、鈣及鎂量,分別為67、38及5 mg L-1,而自鳥糞石溶出者分別為20、34及12 mg L-1。未調整有機酸pH下,添加腐植酸能促進草酸和檸檬酸自磷礦石和鳥糞石之釋磷作用,而腐植酸能否增進有機酸自磷礦石和鳥糞石中溶出鈣與鎂,則與含磷資材種類有關,如可增進磷礦石中鈣釋出但不利鎂之釋出,而對鳥糞石其效應則相反;中性有機酸添加腐植酸有促進磷礦石和鳥糞石中磷、鈣與鎂溶出之作用。
試驗三為腐植酸對作物養分吸收與錳毒害之緩解:其一採水耕方式,以大豆(高雄選10號及大連豆兩品種)為供試作物,以Johnson水耕液原來之pH(5.6)及調整至7.5兩種酸鹼度、有或無添加腐植酸500與1000 mg L-1及配合以硝酸錳或氯化錳為錳源多添加50 mg L-1錳和未多添加三種錳濃度組成十個不完全處理,進行水耕栽培。高雄選10號大豆與大連豆分別於處理後10及14天採植體分析及比較其要素含量。結果顯示,在原水耕液錳濃度之二種酸鹼度下,添加腐植酸皆減少高雄選10號之氮、磷、鉀、鈣及鎂之吸收,但在原酸性水耕液下多可促進大連豆對上述養分之吸收,顯示腐植酸促進大豆對大量及次量養分元素之吸收因品種而異。對微量元素吸收影響而言,不多加錳而在二種酸鹼度下,添加腐植酸降低高雄選10號大豆之鐵吸收,但大連豆僅在水耕液pH 5.6添加腐植酸時,鐵吸收減少,而在pH 7.5時則有利於鐵吸收。同樣的,在未多加錳的情況下,於二種酸鹼度下添加腐植酸皆可增進兩種大豆之錳吸收。原水耕液pH下且僅多加50 mg L-1之錳,兩種大豆葉部錳濃度遠高於160 mg kg-1之錳毒害臨界值,分別添加二種濃度腐植酸者,高雄選10號大豆錳吸收無顯著變化,但大連豆者減少,惟二種大豆葉部錳濃度仍大於錳毒害臨界值而應有錳毒害現象。添加腐植酸對大豆鋅之吸收,因水耕液酸鹼度與品種不同而異,酸性時,腐植酸降低兩種大豆之鋅吸收;鹼性下,腐植酸使高雄選10號大豆之鋅吸收減少而大連豆者增加。 其二採土耕試驗,供試土壤同試驗一,供試作物為萵苣,供試土壤分別以中性腐植酸處理使其分別多含10、20及30 g kg-1,並以未添加者為對照,每種土壤共組成四處理,不同處理土壤裝盆後種植萵苣,35天後採收植體分析,比較其養分吸收。結果顯示,腐植酸在不同土壤中對萵苣之養分吸收有不同影響。在鳳光里系及鹿港系土壤,添加量在30 g kg-1以內,大致降低萵苣對氮、磷、鉀、鈣、鎂、鐵、錳、銅及鋅等養分之吸收,但平鎮系土壤添加腐植酸則改善萵苣生長及促進氮、鐵、銅及鋅等養分之吸收。
Abstract
The humic acid (HA) is the major constituent of soil humus and is a common product of organic fertilizer when the organic matter is incorporated to soil. Humic acid is highly related to soil, fertilizer and crop and plays an important role in crop production. Recently, the direct use of phosphate rocks (PR) as phosphorus source is common in traditional or organic farming. However, the low solubility of PR confines its use. There is much study about to enhance the availability of PR by addition of organic matter or humic substances. However, little study has been done about the effect of HA combined with organic acid on the solubility of PR. In addition, there is a large area of strongly acidic soils in Taiwan, thus crops grown on it may suffer from high concentrations of manganese (Mn) and aluminum (Al). An attempt to reduce the toxicity by HA is also deeply concerned. Therefore, the objectives of the study are to investigate: (1) the effect of HA on the release of nutrients from different soils; (2) the effect of HA, organic acids or combination of both on the release of nutrients from PR or guano; and (3) the effect of HA on the nutrient uptake, growth, and reducing Mn toxicity of crop.
In the experiment I, Fengkuangli (Fk), Pinchen (Pc), and Lukang (Lu) soils were used in comparing the effect of 25 g kg-1 HA on the release of nutrient from the soils with that of the control (without HA addition). After completely mixing the soil with HA, the soils were incubated under 25oC and shaking at 100 rpm for 60 days and then the suspensions were filtered. The concentrations of various nutrients in filtrate were determined and the residue was analyzed by X-ray diffraction. The electro-ultra-filtration (EUF) was used to extract the available or potential phosphorus (P) and potassium (K) in the residues. The results show that HA addition increased the availability of P and K in calcareous or strongly acidic soil and was favorable for the release of calcium (Ca) and magnesium (Mg) in calcareous soil. However, HA addition increased Mg release of strongly acidic soil. Humic acid also enhanced significantly the release of iron (Fe) and aluminum (Al) in strongly acidic soil.
In experiment II, nine different extractants included three kinds of organic acids (formic, oxalic, and citric acid) which were combined with HA or not, 1.0 g L-1 HA solution, deionic water, and 1.0 g L-1 hydrochloric acid solution were used for the extraction of nutrients from PR or guano. The effects of pH level of the extractants on the solubilization of nutrients from PR and guano were also studied. The addition rate of PR and guano in 100 mL extractant was 0.25 g. The reactants were shaking at 150 rpm under 25oC for 20 hours and filtered. The contents of P, Ca, and Mg in filtrate were determined. The results show that amount of P, Ca, and Mg solubilized from PR by neutral HA were 67, 38, and 5 mg L-1, respectively, while that from guano were 20, 34, and 12 mg L-1, respectively. The HA enhanced the solubilization of P from PR and guano by oxalic and citric acid at unadjusted pH condition. The enhancement of Ca and Mg solubilization by organic acids from PR and guano with the addition of HA was quite different. Humic acid increased the solubilization of Ca but decreased that of Mg from PR and the reverse was true for guano. The solubilization of P, Ca, and Mg by the three kinds of organic acids used from PR and guano increased under neutral pH condition.
In experiment III, a hydroponic culture and a soil culture were used. There were 10 treatments in hydroponic culture and two varieties of soybean (Kaohsiung sel. 10 and Dalian) were used as indicator plant. The treatments were incomplete combination of two pH levels (5.6 and 7.5), three HA levels (0, 500, and 1000 mg L-1), two Mn levels (0.1 and 50.1 mg L-1) and two Mn sources (manganese chloride and manganese nitrate). The Kaohsiung sel. 10 soybeans were treated for 10 days and that of Dalian soybeans 14 days. After harvesting and drying, the plants materials were analyzed the various nutrient contents. The results show that HA-treated Kaohsiung sel. 10 soybean absorbed less nitrogen (N), P, K, Ca, and Mg than that without HA addition. However, in acidic condition, HA addition enhanced the uptake of N, P, Ca, and Mg of Dalian soybeans. In the cultural solution with 0.1 mg L-1 Mn concentration, the uptake of Fe by Kaohsiung sel. 10 soybeans decreased by application of HA but that of Mn in the two varieties of soybean increased. Addition of HA decreased the Fe uptake by Dalian soybean in pH 5.6 cultural solution but that increased in pH 7.5 cultural solution. Under 50.1 mg L-1 Mn concentration in cultural solution and without application HA, the leaf Mn concentrations of the two varieties of soybean were higher than 160 mg kg-1 which was the critical toxic level of Mn. With addition of HA, the Mn uptake of Dalian soybean decreased. However, the Mn concentrations in leaves were still higher than 160 mg kg-1. With application of HA in cultural solution, the zinc (Zn) uptake of the two varieties of soybean decreased under acidic (pH 5.6) condition. However, the Zn uptake of the Kaohsiung sel. 10 soybean decreased but that of the Dalian soybean increased in alkaline (pH 7.5) condition. The soil cultivation study was conducted in a greenhouse using three kinds of soil (Fk, Lu, and Pc), four application rates of HA (0, 10, 20, and 30 g kg-1) and employing lettuce as an indicator plant. After 35 days of treatment, plants were harvested for analysis. The results show that the effects of HA on the nutrient uptake of lettuce were significantly different according the soil series. The uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, and Zn by lettuce with application HA decreased as compared with the control in Fk and Lu soil. However, the growth and nutrient uptake by lettuce grown in Pc soil increased with the application of HA.
封面
摘要
Abstract
第一章 緒論
第二章 文獻回顧
第一節 土壤腐植酸與土壤有機酸
第二節 腐植酸之生成
第三節 腐植物質對作物生長及養分吸收影響
第四節 腐植物質對植株各部位養分濃度之影響
第五節 影響腐植物質對植物養分吸收作用之因素
第六節 不同來源之腐植物質對植物生長及養分吸收之影響
第七節 植物中養分之增加與腐植物質本身所含養分之關連性
第八節 腐植物質中不同成分促進植物生長及養分吸收之作用
第九節 腐植物質增進植物生長與養分吸收之機制
第三章 腐植酸對土壤養分釋出之效應
第一節 前言
第二節 材料與方法
第三節 結果與討論
一、腐植酸對土壤中銨態氮、磷與鉀釋出之影響
二、腐植酸對土壤中鈣與鎂釋出之影響
三、腐植酸對土壤鐵、鋁與錳溶出之影響
第四節 結論
第四章 腐植酸對有機酸溶出磷礦粉及鳥糞石養分的影響
第一節 前言
第二節 材料與方法
第三節 結果與討論
一、有機酸溶出磷礦粉及鳥糞石中磷、鈣與鎂的效
二、腐植酸對有機酸溶出磷礦粉及鳥糞石中磷、鈣及鎂的影響
第四節 結論
第五章 腐植酸對作物養分吸收與錳毒害的緩解作用
第一節 前言
第二節 材料與方法
一、水耕試驗
二、土耕試驗
第三節 結果與討論
一、腐植酸對水耕大豆生長與緩解錳毒害之效應
二、腐植酸對水耕大豆營養要素吸收之影響
三、腐植酸對土耕萵苣生長之效應
四、腐植酸對土耕萵苣營養要素吸收之影響
第四節 結論
第六章 總結
第七章 參考文獻
附錄
第七章 參考文獻
尹稷、梁家鳳。1979。有機化學(下冊)。pp.82-97. 中國書局。
方英傑、王傳釗。1979。蔗田土壤非交換性鉀素之測定及其與甘蔗生長之關係。臺灣糖業研究所研究彙報,86:21-40。
方英傑。1995。氮。土壤分析手冊。p.219。中華土壤肥料學會。
王世中、陳三堯、葉可霖。1970。腐植酸在土壤中如何增長。 中華農學會報 72:30-34。
王西華、林正金芳。1988。生質能源學會77年度宣讀論文。中華生質能源學會。
王敏昭。1988。土壤環境中腐植質之分佈及性狀。土壤肥料通訊,20:298-301。
王斐能。1996。有機質肥料對青梗白菜及養分組成的影響。國立台灣大學農業化學研究所碩士論文。
吉田 稔。1983。轉換沺土壤化學。水田轉作 pp.5-22。日本土壤肥料學會 博愛社。東京、日本。
何念祖、孟賜福。1987。植物營養原理。pp. 1-434。上海科學技術出版社。
李子純。1981。盆栽試驗技術。作物需肥診斷技術。pp.117-128。台灣省農業試驗所。
李寶樓。1989。錳毒害對大豆無機營養的影響。國立台灣大學農業化學研究所碩士論文。
卲孝侯、胡靄堂、秦杯英。1993。添加石灰有機物對酸性土壤鎘活性的影響。南京農業大學學報16:47-52。
林俊義。1999。台灣永續農業發展現況。永續農業作物合理化施肥技術,p.7。中華永續農業協會、台灣省農業試驗所。
林家棻。1982。台灣省土壤肥力能限分類規範調查研究。台灣省農業試驗所民國七十一年年報。
林景和、劉添丁、張德前、陳啟吉、陳武揚、黃金助、林正賢、陳聰富、陳慶忠。1991。中部地區主要果樹有機肥料使用調查。台中區農業改良場研究彙報,33:49-59。
翁玉娥。1993。有機肥料的添加對磷在土壤中的轉變與有效性的影響。國立中興大學土壤研究所碩士論文。
張守敬。1951。臺灣省土壤肥力概述,第七章-臺灣土壤中的磷酸。臺灣省農業試驗所報告第七號。臺灣省農業試驗所。
張愛華。1983。電泳超瀘法之測定原理及其結果解釋與應用。土壤肥料通訊,334:1837-1852。中華土壤肥料學會。
連深。1993。酸性土壤落花生之營養障礙及施肥改進。台灣東部問題土壤改良研討會論文集,pp.177-192。台灣省花蓮區農業改良場。
郭魁士。1980。土壤學。pp. 170-301。中國書局。
郭鴻裕、朱戩良。1989。本省蔬菜田專業區土壤殘留鹽分調查。78年度土壤肥料試驗報告。台灣省農林廳。
郭鴻裕、劉滄棽、朱戩良、劉禎祺、江志峰。1990。台灣地區農田肥力增進策略。台灣地區土壤特性及合理化施肥研討會論文集,p.136。陳尊賢、王明果、劉禎祺(編輯)。中華土壤肥料學會。
陳仁炫。1995。磷。土壤分析手冊。pp. 270-273。中華土壤肥料學會。
陳立夫、王敏昭。1995。台灣兩種主要農耕土壤腐植酸之光譜及其他分析特性。中國農業化學會誌,30:33-42。
陳庚鳳、連大進、張建生。1997。台灣雜糧作物品種圖說第三輯。pp. 117-118。台灣省政府農林廳。
陳琦玲、張瑞明。1999。合理化施肥與環境維護。永續農業作物合理化施肥技術。陳武雄、林俊義 主編。中華永續農業協會、台灣省農業試驗所。
黃涵、洪立。1988。台灣蔬菜彩色圖說。pp. 70-72。國立台灣大學園藝系。
黃祥慶、蔡宜峰。1993。不同用量乾豬糞對菠菜及葉萵苣生育及產量之影響。台中區農業改良場研究彙報,38:37-43。
黃鎮海、郭福成。1996。作物施肥手冊。p. 123。台灣省政府農林廳、行政院農業委員會。
楊光盛、林學正。1995。鐵、錳、銅、鋅。土壤分析手冊。pp. 307-314。中華土壤肥料學會。
楊秋忠、莊作權、郭鴻裕。1986。接種內生菌根菌對大豆生長、生產、固氮作用及礦物磷利用之效應。中華農學會報(新),131:35-41。
詹國良。1998。台灣雜糧作物品種圖說續版。pp. 137-138。行政院農業委員會、台灣省政府農林廳。
謝順景、謝慶芳、林景和、徐國男。1992。長期施用家畜禽排泄物堆肥對土壤與作物之影響。農業資材對環境之影響研討會論文集。pp.179-194。中華生質能源學會、國立台灣大學農業化學系編印。
謝慶芳、徐國男。1995。台灣中部地區有機農法可行性研究。永續農業研究及推廣討論會專集,pp.123-135。台中區農業改良場。
鍾仁賜、葉美雲、林鴻淇、張則周。1993。玉米穗軸堆肥化對磷礦粉有效性及堆肥物理化學性質之影響。中國農業化學會誌,31:220-228。
鍾仁賜、葉美雲、張則周。1993。酸性土壤中施用有機物對作物生長及鋁、錳之解毒作用。台灣東部問題土壤改良研討會論文集。pp.179-197。中華土壤肥料學會、台灣省花蓮區農業改良場。
鍾仁賜、葉美雲、張則周。1996。在紅土中施用玉米穗軸堆肥對磷有效性及作物生長的影響。中國農業化學誌,34:219-227。
譚增偉。1995。鉀。土壤分析手冊。pp. 277-290。中華土壤肥料學會。
蘇秋華、楊秋忠。1997。從植物殘體到腐植物質 土壤肥料通訊,62:26-29。中華土壤肥料學會。
Abbott, J.S. and T.C. Tucker. 1973. Persistence of manure phosphorus availability in calcareous soil. Soil Sci. Soc. Am. J. 37:60-63.
Addiscott, T.M. and A.E. Johnston. 1975. Potassium in soils under different cropping system 3. Non-exchangeable potassium in soils from long-term experiments at Rothamsted and Woburn. J. Agric. Sci. (Cambridge) 84:513-524.
Aiken, G.R., D.M. McKnight, R.L. Wershaw and P. MacCarthy. 1985. An introduction to humic substances in soil, sediment, and water. pp.1-9. In: G.R. Aiken et al. (eds.) Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation and Characterization. Wiley Interscience, New York.
Appelt, H., N.T. Cloeman and P.F. Pratt. 1975a. Interactions between organic compounds, mineral, and ions in volcanic-ash-derived soils: I. Adsorption of benzoate, salicylate, and phthalate ions. Soil Sci. Soc. Am. Proc. 39:623-627.
Appelt, H., N.T. Cloeman and P.F. Pratt. 1975b. Interactions between organic compounds, mineral, and ions in volcanic-ash-derived soils: II. Effects of organic compounds on the adsorption of phosphate. Soil Sci. Soc. Am. Proc. 39:628-630.
Aresund, L. 1980. Extraction and solubility of organic matter and its content of Ca, Mg, K, Fe, Al and Si before and after treatment of the soil with a H+-saturated resin. Swed. J. Agric. Res. 10:139-154.
Baligar, V.E. and O.L. Bennett. 1986. Outlook on fertilizer use efficiency in the tropics. Fertil. Res. 10:83-96.
Bangar, K.C., S. Shanker, K.K. Kapoor, K. Kakreja and M.M. Mishra .1989. Preparation of nitrogen and phosphorus enriched paddy straw compost and its effect on yied and nutrient uptake by wheat (Triticum aestivum L.). Biol. Fertil. Soil 8:339-342.
Barber, D.A. and J.K. Martin. 1976. The release of organic substances by cereal roots in soil. New Phytol. 76:69-80.
Birkland, P.W. 1974. Pedology, Weathering and Geomorphological Research. Oxford Univ. Press, London.
Bolan, N.S., R, Naidu, S. Mahimairaja and S. Baskaran. 1994. Influence of low molecular-weight organic acids on the solubilization of phosphate. Biol. Fertil. Soils 18:311-319.
Bremner, J.M. 1965. Inorganic forms of nitrogen. pp. 1149-1178. In: C.A. Black. (ed.). Method of Soil Analysis. Part 2. Agro. No. 9 ASA-SSSA. Wis.
Bukvova, M. and V. Ticy. 1967. The effect of humus fractions on the phosphorylase activity of wheat (Triticum aestivum L.). Biol. Plant. 9:401-406.
Cassman, K.G., B.A. Roberts, T.A. Kerby, D.C. Bryant and S.L. Higashi. 1989. Soil potassium balance and cumulative cotton respose to annual potassuim additions on a vermiculitic soil. Soil Sci. Am. J. 53:805-812.
Cassman, K.G., B.A. Roberts. and D.C. Bryant. 1992. Cotton respose to residual fertilizer potassium on vermiculitic soil: Soil organic matter and sodium effects. Soil Sci. Soc. Am. J. 56:823-830.
Chen, J.H. and S.A. Barber. 1990. Effect of liming and adding phosphate on predicted phosphorus uptake by maize on acid soils of three soil orders. Soil Sci. 150:844-849.
Chen, Y. and M. Schnitzer. 1978. The surface tension of aqueous solutions of soil humic substances. Soil Sci. 125:7-15.
Chen, Y. and T. Aviad. 1990. Effects of humic substances on plant growth. pp.161-163. In: P. MacCarthy, R.C. Malcolm, C.E. Clapp and P.R. Bloom (eds.) Humic Substances in Soil and Crop Sciences: Selected Readings. Soil Science Society America, Inc.
Chuang, F.W., C.M. Wang, C.M. Lai and M.K. Wang.1992. Phosphate sorption by kaolinite and gibbsite. J. Chinese Agric. Chem. Soc. 30:119-128.
Cooper, K.M. and P.B. Tinker. 1978. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizae. II uptake and transfer of phosphorus, zinc and sulphur. New Phytol. 81:43-52.
Cress, W.A., G.O. Throneberry and D.L. Lindsay. 1979. Kinetics of phosphorus absorption by mycorrhizal and non- mycorrhizal tomato roots. Plant Physiol. 64:484-487.
Dalton, I.D. Russell, G.C. and Sieling, D.H. .1952. Effect of organic matter on phosphate availability. Soil Sci. 73: 173-177.
Dormaar, J.F. 1975. Effects of humic substances from chernozemic Ah horions on nutrient uptake by Phaseolus vulgaris and Festuca scabrella. J. Soil Sci. 55:111-118.
Earl, K.D., J.D. Syers and J.R. McLaughlin. 1979. Origin of the citrate, tartrate and acetate on phosphate sorption by soils and synthetic gels. Soil Sci. Soc. Am. J. 43:674-678.
Epstein, E. 1971. Mineral Nutriton of Plants: Principles and Perspectives. pp.38-39. Uni. of California, Davis.
Evangelou, V. P. and R.L. Blevins.1985. Soil-solution phase interactions of basic cations in long term tillage systems. Soil Sci. Soc. Am. J. 49:357-362.
Evangelou, V.P. and R.L. Blevins. 1988. Effect of long term tillage systems and nitrogen addition on potassium quantity-intensity relationships. Soil Sci. Soc. Am. J. 52:1047-1054.
Fagbenro, J.A. and A.A. Agboola. 1993. Effects of different levels of humic acid on the growth and nutrient uptake of teak seedlings. J. Plant Nutr. 16:1465-1483.
Felbect, G.T., Jr. 1971. Structural hypotheses of humic acids. Soil Sci. 111:42-48.
Fernandez, V.H. 1968. The action of humic acids of different sources on the development of plants and their effect on increasing concentration of the nutrient solution. Pont. Acad. Sci. Scr. Varia 32:805-850.
Flaig, W. 1984. Soil organic matter as a source of nutrients. pp. 73-92. In: Oganic Matter and Rice. IRRI.
Foth, H.D. 1984. Fundamentals of Soil Science. 7th edition. pp. 204-206. John Wiley & Sons. New York USA.
Fox, T.R. and N.B. Comerford. 1992. Influence of oxalate loading on phosphorus and aluminum solubility in Spodosols. Soil Sci. Soc. Am. J. 56:290-294.
Fox, T.R., N.B. Comerford and W.W. McFee. 1990. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54:1763-1767.
Gaur, A.C. 1964. Influence of humic acid on growth and mineral nutrition in plants. Bull. Assoc. Fr, Itude Sol. 35:297-219.
Gee, G.W. and J.W. Bauder. 1986. Particle size analysis. pp.383-411. In: A. Klute (ed.). Methods of Soil Analysis. Part 1, 2nd edition. Am. Soc. Agronomy and Soil Sci. Soc. Am., Madison, Wis., USA.
Gerk, J. 1992. Phosphate, aluminum and iron on the soil solution of three different soil in relation to varing concentration of citric acid. Z. Pflanzenernähr. Bodenk. 155:339-343.
Gerk, J. 1994. Kinetics of soil phosphate desorption as affected by citric acid. Z. Pflanzenernähr. Bodenk.157:17-22.
Ghosh, K. and M. Schnitzer. 1980. Macromolecular structures of humic substances. Soil Sci. 129:266-276.
Goulding, K.W.T. and O. Talibudeen 1984. Thermodynamics of K-Ca exchange in soils. I. Effects of potassium and organic matter residues in soils from the Broadbalk and Saxmundham Rotation I experiment. J. Soil Sci. 35:397-408.
Graham, R.D., R.J. Hannam and N.C. Uren. 1988. Mangnese in Soils and Plants. Kluwer Academic Publisher, Dortrecht.
Grossl, P. R. and W. P. Inskeep. 1991. Precipitation of dicadcium phosphate dihydrate in the presence of organic acids. Soil Sci. Soc. Am. J. 55:670-675.
Hagemann, O. and S. Miller. 1976. Investigations into the effect of pH on the recovery of fertilizer phosphate and on the metabolization of soil phosphates. Arch. Acker-U. Pflanzenbau U. Bodenk. 20:805-815.
Haider, K., J.P. Martin, and Z. Filip. 1975. Humus chemistry. p. 195-244. In: E.A. Paul and A.D. McLaren. (eds.) Soil Biochemistry. Vol. 4. Marcel Dekker, New York.
Hayes, M.H.B. and F.L. Himes, 1986. Nature and properties of humus-mineral complexes. p. 103-158. In: P..M. Huang and M. Schnitzer. (eds.) Interaction of Soil Minerals with Natural Oganics and Microbes. SSSA Spec. Publ. No. 17, Soil Soc. Am. Madison, Wis.
Hayes, M.H.B. and R.S. Swift. 1978. The chemistry of soil organiccolloids. pp. 179-320. In: D.J. Greenland and M.H.B. Hayes (eds.) The Chemistry of Soil Constituents. John Wiley & Sons, New York.
Horiguchi, T. 1988. Mechanism of manganese toxicity and tolerance of plants IV. Effects of silicon on alleviation of manganese toxicity of rive plant Soil Sci. Plant Nutr. 34:65-73.
Hue, N.V. 1991. Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci. 152:463-471.
Hue, N.V., G.R. Craddock, and F. Adams. 1986. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J. 50:28-34.
Hue, N.V., I. Amien and J. Hansen. 1989. Aluminum detoxication with green manures. Commun. Soil Sci. Plant Anal. 70:1491-1511.
Inbar, Y., Y. Chen and Y. Hadar. 1990. Humic substances formed during the composting of organic matter. Soil Sci. Soc. Am. J. 54:1316-1323.
Inskeep, W.P. and J.C. Silvertooth. 1988. Inhibition of hydroxyapatite precipitation in the presence of fulvic, humic and tannic acids. Soil Sci. Soc. Am. J. 52:941-946.
Irinto, B. and K.H. Tan. 1993. Effect of humic acid on callus culture of slash pine (pinus elliottii Engelm). J. Plant Nutr. 16:1109-1118.
Jelenic, D.B., Hajdukovic and Z. Aleksic. 1966. The influence of humic substances on phosphate utilization from labelled superphosphate. pp.85-88. In: The Use of Isotopes in Soil Organic Matter Studies. FAO/IAEA Tech. Meet., Pergamon Press, Oxford.
Johns, W.D., R.E. Grim and W.F. Bradley. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sed. Petrol. 24:242-251.
Karathanasis, A.D. and K.L. Wells. 1990. Conservation tillage effects on the potassium status of some Kentucky soils. Soil Sci. Soc. Am. J. 54:800-806.
Kawai, K. 1980. The relationship of phosphorus adsorption to amorphous aluminum for characterizing Andosols. Soil Sci. 129:186-190.
Keeney, D.R. and D.W. Nelson. 1982. Nitrogen-Inorganic forms. pp. 643-698. In: A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Khalafallah, M.A., M.S.M. Saber and H.K. Abd-El-Maksoud. 1982. Influence of phosphate dissolving bacteria on the efficiency of superphosphate in a calcareous soil cultivated with Vicia faba. Z. Pflanzenernähr. Bodenk. 145:455-459.
Khalafallah, M.A., M.S.M. Saber and H.K. Abd-El-Maksoud. 1983. Effect of phosphate dissolving bacteria on P-uptake by barley plants grown on a salt affected calcareous soil. Z. Pflanzenernähr. Bodenk. 146:545-550.
Knudsen, D., G.A. Peterrson and P.F. Pratt. 1982. Lithium, Sodium and Potassium. pp. 228-238. In: A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Kononova, M..M. 1966. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility. Pergamon Press, New York.
Kpomblekou-A, K. and M.A. Tabatabai. 1994. Effect of organic acids on release of phosphous from phosphate rocks. Soil Sci. 158:442-453.
Krotzchmar, R.M., H. Hafnar, A. Bationo and H. Marschner. 1991. Long and short term effects of crop residues on aluminum toxicity, phosphorus availability and growth of pearl millet in acid sandy soil. Plant Soil 136:215-223.
Lanyon, L.E. and W.R. Heald. 1982. Magnesium, calcium, strontium, and barium. pp.247-262. In: A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Larsen, S. 1967. Soil phosphorus. Adv. Agron. 19:131-206.
Lee, Y.S. and R.J. Bartlett. 1976. Stimulation of plant growth by humic substances. Soil Sci. Soc. Am. Proc. 40:876-879.
Lindsay, W.L. 1979. Chemical Equilibria in Soils. p. 449. Wiley Interscience, New York..
Lindsay, W.L. and A.P. Schwab. 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821-840.
Lopez-Hernandez, D., G. Siegert and J.V. Rodriguez. 1986. Competitive adsorption of phosphate with malate and oxalate by tropical soils. Soil Sci. Soc. Am. J. 50: 1460-1462.
Manley, E.P. and L.J. Evans. 1986. Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Sci. 141:106-112.
MarCarthy, P., C.E. Clapp, R.L. Malcolm and P R. Bloom.1990. An introduction to soil humic substance. pp. 1-10. In: P. MarCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom. (eds.) Humic Substances in Soil and Crop Sciences: Selected Readings. American Society of Agronomy, Inc., Madison, Wisconsin, USA.
Marschner, H., M. Treeby, and V. Romheld. 1989. Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Z. Pflanzenernähr. Bodenk., 152:197-204.
Martin, H.W. and D.L. Sparks. 1983. Kinectics of nonexchangeable potassium release from two coastal plain soils. Soil Sci. Soc. Am. Proc. 47:883-887.
Martin, J.P. and K. Haider. 1971. Microbial activity in relation to soil humus formation. Soil Sci. 111:54-63.
Mato, M.C., M.G. Olmedo and J. Mendez. 1972. Inhibition of indoleacetic acids oxidase by soil humic acids fractionated in Sephadex. Soil Biol. Biochem. 4:469-473.
Mato, M.C., R. Fabregas and J. Mendez. 1971. Inhibitory effect of soil humic acids on indoleacetic acids oxidase. Soil Biol. Biochem. 3:285-288.
McLean, E.O. 1982. Soil pH and lime requirement. pp.119-224. In: A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Meek, B.D., L.E.Graham, T.J. Donovan and K.S. Mayberry. 1979. Phosphorus availability in a calcareous soil after high loading rates of animal manure. Soil Sci. Soc. Am. J. 43:741-743.
Mengel, K. and E.A. Kirby. 1982. Principles of Plant Nutrition. p.593. International Potash Institute, Bern, Switerland.
Miller, W.P., L.W. Zelazny and D.C. Martens. 1986. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37:1-13.
Mortland, M.M. 1986. Mechanism of adsorption of nonhumic organic species by clays. pp.59-76. In: P.M. Huang and M. Schnitzer (eds.) Interactions of soil minerals with natural organics and microbes. SSSA Spec. Publ. 17. SSSA, Madison. WI.
Murdock, C.L. J.A. Jackobs and J.W. Gerdemann. 1967. Utilization of phosphorus sources of different availability of mycorrhizal and non-mycorrhizal maize. Plant Soil 27:329-334.
Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of the phosphate in natural waters. Anal. Chim. Acta 27:31-36.
Mylonas,V.A. and C.B. McCant. 1980. Effects of humic acid and fulvic acid on growth of tobacco. I. Root initiation and elongation. Plant Soil 54:485-490.
O’Connor, G.A., K.L. Knudtsen and G.A. Connel. 1986. Phosphorus solubility in sludge-amended calcareous soils. J. Environ. Qual. 15:308-312.
Oades, J. M. 1989. An introduction to organic matter in mineral soils. pp. 89-159. In: J.B. Dixon and S.B. Weeds (eds.) Minerals in Soil Environment. 2nd edition. .Soil Sci. Soc. Am., Madison, Wis.
Ohki, K. 1977. Manganese and zinc status related to maxium growth for selected agronomic crops. pp.659-668. Proc. of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture. Tokyo.
Olk, D.C. and K.G. Cassman. 1993. Reduction of potassium fixation by organic matter in vermiculitic soils pp. 307-315. In: K. Mulongoy and R. Merckx (eds.) Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture. Wiley-Sayce, Chichester, England.
Olk, D.C. and K.G. Cassman. 1995. Reduction of potassium fixation by two humic acid fraction in vermiculitic soils. Soil Sci. Soc. Am. J. 59: 1250-1258.
Olson, R.V. et al. 1982. Iron, Aluminum and Manganese. pp. 281-283, pp 307-308, and pp. 314-316. In: A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Parfitt, R.L. 1979. The availability of P from phosphate geothite bridging complexes. Desorption and uptake by ryegrass. Plant Soil 53: 55-65.
Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29-96.
Poonia, S.R., S.C. Metha and R. Pal. 1986. Exchange equilibria of potassium in soils. I. Effects of farmyard manure on potassium-calcium exchange. Soil Sci. 141:77-83.
Powell,C.L. 1979. Effects of mycorrhizal fungi on recovery of phosphate fertilizer from soil by ryegrass plants. New Phytol. 83:681-694.
Rao, D.N. and D.S. Mikkelsen. 1977. Effect of rice straw additions on production of organic acids in flooded soil. Plant Soil 47:303-311.
Rauthan, S.S. and M. Schnitzer. 1981. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (cucumis sativus) plants. Plant Soil 63:491-495.
Raviv, M., Y. Chen, Z. Geler, S. Medina, E. Putievski and Y. Inbar. 1983. Slurry produced by methanogenic fermentation of cow manure as a growth medium for some horticultural crops. Acta Hort. 150:563-573.
Reddy, K.R., M.R. Overcadh, R. Kholed and P.W. Westerman. 1980. Phosphorous adsorption-desorption characteristics of two soils utilized for disposal of animal wastes. J. Environ. Qual. 9: 86-92.
Reisenauer, H.M. 1988. Determination of plant-available soil manganese. pp. 87-95. In: Graham, R.D., R.J. Hannam and N.C. Uren.(eds). Manganese in Soils and Plants. Kluwer Academic Publisher, Dortrecht.
Rhoades, J.D. 1982. Cation exchange capacity. pp. 149-157. In: A.L. A.L. Page, R.H. Miller and D.R. Keeneys. (eds.) Method of Soil Analysis Part II. Agronomy Monograph No. 9. 2nd edition. ASA-SSSA, Wis.
Sanchez-Conde, M.P. and C.B. Ortega.1968. Effeet of humic acid on the development and the mineral nutrition of the pepper plant. pp.745-755. In control de la Fertilization de las plantas cultivada 20 Cologuio Eur. Meditcent Edafol Biol. Aplic. Cuarto, Sevella, Spain.
Sanders, F.E. and Tinker. 1973. Phosphate flow into mycorrhizal roots. Pestic. Sci. 4:385-395.
Schnitzer, M. and H. Kodama. 1976. The dissolution of micas by fulvic acid. Gerderma 15:381-391.
Schnitzer, M., and S. U. Kahn. 1972. Humic Substance in the Environment. Marcel Dekker, Inc., New York.
Senesi, N. and E. Loffredo. 1994. Influence of soil humic substances and herbicides on the growth of pea (pisum sativum L.) in nutrient solution. J. Plant Nutr. 17:493-500.
Sibanda, H.M. and S.D. Young. 1986. Competitive adsorption of humic acids and phosphate on geothite, gibbsite and two tropical soils. J. Soil Sci. 37: 197-204.
Siddaramappa, R., N.R. Jacadish and C.A. Srinivasamuthy. 1991. Efficiency of rock phosphate fertilizer to rice in acid soil of Karnataka, India. pp. 307-312. In: R.J. Wright et al. (eds.) Plant and Soil Interactions at Low pH. Kluwer Academic Publishers. Netherlands.
Singer, A. and J. Navrot. 1976. Extrction of metals from basalt by humic acids. Nature 262:479-481.
Singh, C.P. and A. Amberger. 1991. Solubilization and availability of phosphorus during decomposition of rock phosphate enriched straw urine. Boil. Agric. Horti. 7:261-269.
Singh, Y.P. and C.P. Singh. 1978. Effect of different carbonaceous compound on the transformation of soil nutrients, II. Immobilization and mineralization of applied phosphorus. Biol. Agric. Horti. 4:301-307.
Sladky, Z. 1959. The effect of extracted humus substances on growth of tomato plants. Biol. Plant. 1:199-204.
Sparks, D.L., D.C. Martens and L.W. Zelazny. 1980. Plant uptake and leaching of applied and indigenous potassium in Dothan soils. Agron. J. 72:551-555.
Sposito, G. 1989. The Chemistry of Soils. pp.42-65. Oxford University Press, New York.
Sposito, G., K.M. Holtzclaw, C.S. LeVesque and C.T. Johnston. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: II. comparative study of fulvic acid fraction. Soil Sci. Soc. Am. J. 46:265-270.
Stevenson, F.J. 1967. Organic acids in soil. pp.119-146. In: A.D. McLaren and G.H. Peterson (eds.) Soil Biochemistry. Marcel Dekker Inc., New York.
Stevenson, F.J. 1982. Humus Chemistry. pp. 17-54, 195-243. John Wiley & Sons, New York.
Stevenson, F.J. and M.S. Ardakani. 1972. Organic matter reactions involving micronutrients in soils. pp.79-114. In: J.J. Mortvedt. et al. (eds.) Micronutrients in Agriculture. SSSA, Madison, Wis.
Stott, E.T. and J.P. Martin. 1990. Synthesis and degradation of natural and synthetic humic material in soils. pp. 37-64. In: P. MacCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom (eds.) Humic Subatances in Soil and Crop Sciences: Selected Readings. American Society of Agronomy, Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Takker, P.N. 1969. Effect of organic matter on soil iron and manganese. Soil Sci. 108:108-112.
Tan, K.H. 1978a. Effects of humic acid and fulvic acid on release of fixed potassium. Geoderma 21:67-74.
Tan, K.H. 1978b. Variations in soil humic compounds as related to regional and analytical difference. Soil Sci. 125:351-388.
Tan, K.H. 1980. The release of silicon, aluminum and potassium during decomposition of soil minerals by humic acids. Soil Sci. 129:5-11.
Tan, K.H. 1982. Principiles of Soil Chemistry. pp.173-178. Marcel Dekker, Inc. New York.
Tate, R.L. 1987. Soil Organic Matter. pp. 1-25, 114-164. John Wiley and Sons, New York.
Traina, S.J., G. Sposito, D. Hesterberg and U. Kafkafi.1986. Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonite soil. Soil Sci. Soc. Am. J. 50:45-52.
Vaughan, D. and I.R. Malcolm. 1979. Effects of humic acid on invertase synthesis in roots of higher plants. Soil Biol. Biochem. 11:247-272.
Vaughan, D. and I.R. McDonald. 1971. Effects of humic acid on protein synthesis and ion uptake in beat discs. J. Exp. Bot. 22:400-410.
Vaughan, D., B.G. Ord and R.E. Malcolm. 1978. Effect of soil organic matter on some root surface enzymes and uptake into winter wheat. J. Exp. Bot. 29:1337-1344.
Vaughan, D., R.E. Malcolm and B.G. Ord. 1985. Influence of humic substances on biochemical processes in plants. p.77-108. In: D. Vaughan and R.E. Malcolm (eds.) Soil Organic Matter and Biological Activity. Martinus Nijhoff/ Dr. W. Junk Publ., Dordrecht.
Waker, G.F. and W.G. Garrett. 1961. Complexes of vermiculite with amino-acids. Nature (London) 191:1389.
Walkley, A. and I.A. Black. 1934. An examination of Degjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.
Wang, S.C. and S.W. Li 1977. Clay minerals as heterogeneous catalysis in preparation of model humic substance. Z. Pflanzenernähr. Bodenk. 140:669-676.
Wang, T.S.C., M.C. Wang, Y.L. Ferg and P.M. Huang. 1983. Catalytic systhesis of humic substances by natural clays, silts, and soils. Soil Sci. 135:360-360.
Wang, T.S.C., S.W. Li and Y.L. Ferg. 1978. Catalytic polymerization of phenolic compound by clay minerals. Soil Sci. 126:15-21.
Wang, T.S.C., S.Y. Cheng and H.Tung. 1967. Dynamics of soil organic acids. Soil Sci.104:138-144.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top