|
[1] J. Zhou and J. Hoang, “Real time robust human detection and tracking system,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognit., vol. 3, Jun. 2005, pp. 149. [2] C. Hua, H. Wu, Q. Chen, and T. Wada, “A pixel-wise object tracking algorithm with target and background sample,” in Proc. IEEE Int. Conf. on Pattern Recognit., vol. 1, 2006, pp. 739-742. [3] Q. Zhao, J. Kang, H. Tao, and W. Hua, “Part based human tracking in a multiple cues fusion framework,” in Proc. IEEE Int. Conf. on Pattern Recognit., vol. 1, 2006, pp. 450-455. [4] K. Sato and J. K. Aggarwal, “Temporal spatio-velocity transform and its application to tracking and interaction,” Comput. Vision and Image Understanding, vol. 96, pp. 100-128, Nov. 2004. [5] T. Yang, S. Z. Li, Q. Pan, and J. Li, “Real-time multiple objects tracking with occlusion handling in dynamic scenes,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 1, Jun. 2005, pp. 970-975. [6] W. T. Chu, C. W. Wang, and J. L. Wu, “Extraction of baseball trajectory and physics-based validation for single-view baseball video sequences,” in Proc. IEEE Int. Conf. on Multimedia and Expo, Jul. 2006, pp. 1813-1816. [7] L. Wu, X. Meng, X. Liu and S. Chen, “A new method of object segmentation in the basketball videos,” in Proc. IEEE Int. Conf. on Pattern Recognit., vol. 1, 2006, pp. 319-322. [8] H. Miyamori and S. I. Iisaku, “Video annotation for content-based retrieval using human behavior analysis and domain knowledge,” in Proc. IEEE Int. Conf. on Autom. Face Gesture Recognit., Mar. 2000, pp. 320-325. [9] M. Bertini, A. D. Bimbo, and W. Nunziati, “Model checking for detection of sports highlights,” in Proc. ACM Int. Workshop on Multimedia Inf. Retrieval, Nov. 2003, pp. 215-222. [10] D. Reid, “An algorithm for tracking multiple targets,” IEEE Trans. on Autom. Control, vol. AC-24, no. 6, pp. 843-854, Dec. 1979. [11] M. Han, A. Sethi, W. Hua, and Y. Gong, “A detection-based multiple object tracking method,” in Proc. IEEE Int. Conf. on Image Process., vol. 5, 2004, pp. 3065-3068. [12] A. Mohan, C. Papageorgiou, and T. Poggio, “Example based object detection in images by components,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 23, no. 4, pp. 349-361, Apr. 2001. [13] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors,” in Proc. IEEE Int. Conf. on Comput. Vision, vol. 1, Oct. 2005, pp. 90-97. [14] S. J. McKenna, “Tracking groups of people,” Comput. Vision and Image Understanding, vol. 80, no. 1, pp. 42-56, Oct. 2000. [15] D. S. Lee, “Effective Gaussian mixture learning for video background subtraction,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 827-832, May 2005. [16] J. Rittscher, J. Kato, S. Joga, and A. Blake, “A probabilistic background model for tracking,” in Proc. Eur. Conf. on Comput. Vision II, vol. 1843, Jan. 2000, pp. 336-350. [17] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian computer vision system for modeling human interactions,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 831-843, Aug. 2000. [18] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” Proc. the IEEE, vol. 90, pp. 1151-1163, Jul. 2002. [19] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Comput. Surv., vol. 38, no. 4, p. 13, 2006. [20] P. Gabriel, J. –B. Hayet, J. Piater, and J. Verly, “Object tracking using color interest points,” in Proc. IEEE Conf. on Adv. Video and Signal Based Surveillance, Sept. 2005, pp. 159-164. [21] C. J. Veenman, M. J. T. Reinders, and E. Backer, “Resolving motion correspondence for densely moving points,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 23, pp. 54-72, Jan. 2001. [22] D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge, “Tracking non-rigid objects in complex scenes,” in Proc. IEEE Int. Conf. on Comput. Vision, May 1993, pp. 93-101. [23] J. Kang, I. Cohen, and G. Medioni, “Object reacquisition using invariant appearance model,” in Proc. IEEE Int. Conf. on Pattern Recognit., vol. 4, Aug. 2004, pp. 759-762. [24] H. Schweitzer, J. W. Bell, and F. Wu, “Very fast template matching,” in Proc. Eur. Conf. on Comput. Vision IV, 2002, pp. 358-372. [25] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking using the integral histogram,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 1, Jun. 2006, pp. 798-805. [26] F. Porikli, “Integral histogram: a fast way to extract histogram in Cartesian spaces,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 1, Jun. 2005, pp. 829-836. [27] P. Fieguth and D. Terzopoulos, “Color-based tracking of heads and other mobile objects at video frame rates,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., Jun. 1997, pp. 21-27. [28] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” Int. J. Comput. Vision, vol. 40, no. 2, pp. 99-121, Nov. 2000. [29] M. Kristan, et al., “Multiple interacting targets tracking with application to team sport,” in Proc. IEEE Int. Conf. on Image and Signal Process. and Anal., Sept. 2005, pp. 322-327. [30] S. Birchfield, “Elliptical head tracking using intensity gradients and color histograms,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., Jun. 1998, pp. 23-25. [31] M. Isard and J. MacCormick, “BraMBLe: a Bayesian multiple-blob tracker,” in Proc. IEEE Int. Conf. on Comput. Vision, vol. 2, Jul. 2001, pp. 34-41. [32] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “An adaptive color-based particle filter,” Image and Vision Comput., vol. 21, no. 1, pp. 99-110, Jan. 2003. [33] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using mean shift,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 2, Jun. 2000, pp. 142-149. [34] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 25, pp. 564-577, May 2003. [35] Y. Jin and F. Mokhtarian, “Variational particle filter for multi-object tracking,” in Proc. IEEE Int. Conf. on Comput. Vision, Oct. 2007, pp. 1-8. [36] R. R. Hwang and M. Huber, “A particle filter approach for multi-target tracking,” in Proc. IEEE Int. Conf. on Intell. Rob. Syst., Nov. 2007, pp. 2753-2760. [37] R. T. Collins, “Mean-shift blob tracking through scale space,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 2, Jun. 2003, pp. 234-240. [38] C. Yang, R. Duraiswami, and L. Davis, “Efficient mean-shift tracking via a new similarity measure,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., vol. 1, Jun. 2005, pp. 176-183. [39] H. Guo, P. Guo, and H. Lu, “A fast mean shift procedure with new iteration strategy and re-sampling,” in Proc. IEEE Int. Conf. on Syst. Man Cybern., vol. 3, Oct. 2006, pp. 2385-2389. [40] A. Yilmaz, “Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., Jun. 2007, pp. 1-6. [41] C. Shan, Y. Wei, T. Tan, and F. Ojardias, “Real time hand tracking by combining particle filtering and mean shift,” in Proc. IEEE Int. Conf. on Autom. Face Gesture Recognit., May 2004, pp. 669-674. [42] K. Bai and W. Liu, “Improved object tracking with particle filter and mean shift,” in Proc. IEEE Int. Conf. on Autom. Logistics, Aug. 2007, pp. 431-435. [43] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,” Int. J. Comput. Vision, vol. 29, no. 1, pp. 5-28, Aug. 1998. [44] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density function with applications in pattern recognition,” IEEE Trans. on Inf. Theory, vol. 21, pp. 32-40, Jan. 1975. [45] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 17, pp. 790-799, Aug. 1995. [46] D. Comaniciu and P. Meer, “Mean shift analysis and applications,” in Proc. IEEE Int. Conf. on Comput. Vision, vol. 2, Sept. 1999, pp. 1197-1203. [47] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 24, pp. 603-619, May 2002. [48] G. R. Bradski, “Computer vision face tracking for use in a perceptual user interface,” Intel Technol. J., vol. 2, pp. 12-21, 1998. [49] G. R. Bradski, “Real time face and object tracking as a component of a perceptual user interface,” in Proc. IEEE Workshop on Appl. of Comput. Vision, Oct. 1998, pp. 214-219. [50] Intel Corporation, “Open source computer vision library reference manual,” 2001. [51] J. G. Allen, R. Y. D. Xu, and J. S. Jin, “Object tracking using CamShift algorithm and multiple quantized feature spaces,” in Proc. Pan-Sydney Area Workshop on Visual Inf. Process., 2004, pp. 3-7. [52] H. Zhai, X. Wu, and H. Han, “Research of a real-time hand tracking system,” in Proc. IEEE Int. Conf. on Neural Network and Brain, vol. 2, Oct. 2005, pp. 1233-1235. [53] O. –D. Nouar, G. Ali, and C. Raphael, “Improved object tracking with camshift algorithm,” in Proc. IEEE Int. Conf. on Acoust. Speech Signal Process., vol. 2, May 2006, pp. 657-660. [54] H. Chu, S. Ye, Q. Guo, and X. Liu, “Object tracking algorithm based on camshaft algorithm combinating with difference in frame,” in Proc. IEEE Int. Conf. on Autom. Logistics, Aug. 2007, pp. 51-55. [55] Q. Liu, C. Cai, K. N. Ngan, and H. Li, “Camshift based real-time multiple faces match tracking,” IEEE Int. Symp. Intell. Signal Process. Commun. Syst., Nov. 2007, pp. 726-729. [56] J. H. Lee, W. H. Lee, and D. S. Jeong, “Object tracking method using back-projection of multiple color histogram models,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, May, 2003, pp. 25-28.
|