|
[1]T. Mura. A theory of fatigue crack initiation. Materials Science and Engineer, A176, 61-70. (1994) [2]Niels Hansen. Polycrystalline Strengthening. Metallurgicacl Transactions A, 16A, 2167-2190. (1985) [3]A. N. Stroh. A Theory of the Fracture of Metals. Advances in Physics, 1460-6976, 6, 24, 418-465. (1957) [4]A. Granato and K. . Theory of Mechanical Damping Due to Dislocation. Journal of Applied Physics, 27, 583-593. (1956) [5]A. Granato and K. . Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. Journal of Applied Physics, 27, 7, 789-805. (1956) [6]Fabio Marchesoni. Self-organized criticality and dislocation damping. Journal of Alloys and Compounds, 211/212, 124-127. (1994) [7]U. F. Kocks. Kinetics of Solution Hardening. Metallurgical Transactions A, 16A, 2109-2129. (1985) [8]J. D. Embury. Plastic Flow in Dispersion Hardened Materials. Metallurgical Transactions A, 16A, 2191-2200. (1985) [9]A. J. Aredell. Precipitation Hardening. Metallurgical Transactions A, 16A, 2131-2165. (1985) [10]Hussein M. Zbib, Tomas Dila Rubiab, Moono Rhee and John P. Hirth. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear Materials, 276, 154-165. (2000) [11]D. Kuhlamann-Wilsdert. Theory of Workhardening 1934-1984. Metallurgical Transactions A, 16A, 2091. (1985) [12]V. Voltera. Sur l’equilibre des cirps elastiques multiplement connexes. Ann. Ecole Norm. Super. 24, 401-517. (1907) [13]G. I. Taylor. The mechanism of plastic deformation of crystals Parts I, II,. Proceedings of the Royal Society A, 145, 362. (1934) [14]W. C. Dash. Dislocations and mechanical properties of crystals. J. C. Fisher. New York, Wiley, (1957) [15]J. A. Ewing and W. Rosenhain. The crystalline structure of metals. Philosophical Transactions of the Royal Society, A193, 353-375. (1899) [16]Farid F. Abraham. How fast can crack move? A research adventure in materials failure using millions of atoms and big computers. Advances in Physics, 52, 727 – 790. (2003) [17]J. Lepinoux and L. P. Kubin. The dynamic organization of dislocation structures: A simulation. Scripta Metall, 21, 833-838. (1987) [18]N. M. Ghoniem and R. J. Amodeo. Computer simulation of dislocation pattern formation. Solid state phenomena, 3 & 4, 379-406. (1988) [19]E. Van der Giessen and Needleman, A. Discrete dislocation plasticity: A simple planar model. Materials science & engineering, 3, 689-735. (1995) [20]H. Y. Wang and R. O(N) LeSar. Algorithm for dislocation dynamics. Philosophical Magazine, A71, 149-164. (1995) [21]K. C. Le and H. Stumpf. A model of elastic plastic bodies with continuously distributed dislocations. International Journal of Plasticity, 12, 611-627. (1996) [22]L. P. Kubin and G. Canova. The modelling of dislocation patterns. Scripta Materialia, 27, 957-962. (1992) [23]G. Canova, Y. Brechet and L. P. Kubin, B. Devincre, V. Pontikis and M. Condat. 3D Simulation of dislocation: motion on a lattice: Application to the yield surface of single crystals. Microstructures and Physical Properties (ed. J. Rabiet), CH-Transtech. (1993) [24]J. P. Hirth, M. Rhee and H. M. Zbib. Modeling of deformation by a 3D simulation of multipole, curved dislocations. Journal of Computer-Aided Materials Design, 3, 164-166. (1996) [25]D. Raabe, F. Roters and G. Gottstein. Simulation of the statics of 2D and 3D dislocation networks. Computational Materials Science, 5, 203-209. (1996) [26]K. W. Schwarz and J. Tersoff. Interaction of threading and misfit dislocations in a strained epitaxial layer. Applied Physics Letters, 69, 1220. (1996) [27]H. M. Zbib, M. Rhee and J. P. Hirth. On plastic deformation and the dynamics of 3D dislocations. International Journal of Mechanical Science, 40, 113-127. (1998) [28]H. M. Zbib, T. Diaz de la Rubia and V. A. Bulatov. A multiscale model of plasticity based on discrete dis1ocation dynamics. ASME, Journal of Engineering Materials and Technology, 124, 78-87. (2002) [29]K. W. Schwarz. Local rules for approximating strong dislocation interactions in discrete dislocation dynamics Multiscale. Modelling and Simulation in Materials Science and Engineering, 11, 609-625. (2003) [30]Vasily V. Bulatov, Luke L. Hsiung, Meijie Tang, Athanasios Arsenlis, Maria C. Bartelt, Wei Cai1, Jeff N. Florando, Masato Hiratani1, Moon Rhee1, Gregg Hommes, Tim G. Pierce and Tomas Diaz de la Rubia .Dislocation multi-junctions and strain hardening. Nature, 440, 7088, 1174-1178. (2006) [31]K. W. Schwarz. Discrete Dislocation Dynamics Study of Strained-Layer Relaxation. PHYSICAL REVIEW, LETTERS, 91, 14, 145503. (2003) [32]B. von Blankenhagen and P. Gumbsch. Continuum Scale Simulation of Engineering Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 397-409. (2004) [33]H. D. Espinosa, S. Berbenni, M. Panico, and K. W. Schwarz. An interpretation of size-scale plasticity in geometrically confined system. PANS, 102, 47, 16933-16938. (2005) [34]F. Akasheh and H. M. Zbib. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. Journal of Applied Physics, 102, 034314. (2007) [35]F. Akasheh and H. M. Zbib. Dislocation Dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. Journal of Applied Physics, 101, 084314. (2007) [36]H. Tanga, K. W. Schwarzb and H.D. Espinosa. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Materialia, 55, 1607-1616. (2007) [37]Hussein M. Zbib, Tomas Diaz de la Rubia and Vasily Bulatov .A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics. Transactions of the ASME, 124, 78-87. (2002) [38]Wei Cai and Vasily V. Bulatov. Mobility laws in dislocation dynamics simulations. Materials Science and Engineering A, 387, 277-281. (2004) [39]Ferenc F. Csikor, Christian Motz, Daniel Weygand, Michael Zaiser and Stefano Zapperi. Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale. Science, 318, 5848, 251-254. (2007) [40]V. A. Lubarda and X. Markenscoff. The stress field for a screw dislocation near cavities and straight boundaries. Materials Science and Engineering A, 349, 327-334. (2003) [41]J. Dundurs and T. Mura. Interaction between an edge dislocation and a circular inclusion. Journal of the Mechanics and Physics of Solids, 12, 177-189. (1964) [42]Johannes Weertman and Julia R. Weertman. Elementary Dislocation Theory. Oxford University Press, New York, 9, (1992) [43]Richard W. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials, 4th ed. John Wiley & Sons, Inc., New York, 9, (1996) [44]H. M. Zbib, M. Hiratani and M. Shehade. Continuum Scale Simulation of Engineering Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 201-226. (2004) [45]J. P. Hirth and J. Lothe. Theory of Dislocations. Wiley, New York, (1982) [46]Wei Cai, Athanasios Arsenlisb, Christopher R. Weinbergera and Vasily V. Bulatovb. A non-singular continuum theory of dislocations. Journal of the Mechanics and Physics of Solids, 54, 561–587. (2006) [47]Hussein M. Zbib, Moono Rhee and John P. Hirth .On Plastic Deformation and The Dynamics of 3D Dislocations. International Journal of Mechanical Sciences, 40, 2-3, 113-127. (1998) [48]Vasily V. Bulatov and Wei Cai. Computer simulation of dislocations. Oxford University Press, New York, 196-240, (2006) [49]Peter Linz and Richard Wang. Exploring numerical methods: an introduction to scientific computing using MATLAB. Jones and Bartlett Publishers, Inc. MA, 273-274, (2003) [50]J. P. Hirth, H. M. Zbib and J. Lothe. Forces on high velocity dislocations. Modelling and Simulation in Materials Science and Engineering, 6, 165-169. (1998) [51]N. M. Ghoniem and L. Z. Sun. Fast-sum method for the elastic field of three-dimension dislocation ensembles. Physical review B, 60, 128-140. (1999) [52]James C. M. Li. The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metallurgica, 8, 296-311, (1960) [53]Hartley and Hirth. Interaction of nonparallel, noncoplanar dislocations. Acta Metallurgica, 13, 79-88. (1965)
|