跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳盈志
研究生(外文):Ying-Chih Wu
論文名稱:連續攪拌式厭氧生物產氫反應器之水力動力性質
論文名稱(外文):Hydrodynamic Behavior of Hydrogen Production in the Continuously Stirred Anaerobic Bioreactors
指導教授:吳石乙
指導教授(外文):Shu-Yii Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:128
中文關鍵詞:頻譜圖分析三相滯留量壓力擾動生物產氫連續攪拌式厭氧生物產氫反應器
外文關鍵詞:power spectrum diagramspressure fluctuation analysisbiohydrogen productioncontinuously stirred anaerobic bioreactorgas-liquid-solid holdups
相關次數:
  • 被引用被引用:7
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
生物產氫已逐漸發展成重要的生質能源技術之ㄧ,在生物產氫反應器評估產氫效率及規模放大中,流體的流動形態及氣-液-固三相滯留量之關係是很重要的參數,生物產氫反應器中隨著生質氣體(biogas)的產率增加,流體流動將由分散氣泡(dispersed bubble)轉變為結合氣泡(coalesced bubble),最後形成塊狀氣泡(slugging bubble),反應槽內三相滯留量也隨之改變。
本研究主體為連續攪拌式厭氧生物產氫反應器(continuously stirred anaerobic bioreactor, CSABR),實驗第一部份以壓力感測器測量反應器內床壓擾動分佈,並以壓力擾動頻譜圖,分析生物產氫反應器內流體流動形態。研究發現隨著水力停留時間(hydraulic retention time, HRT)調降的過程中,產氣速率(biogas production rate, BPR)與生質濃度(biomass concentration, CB)隨之增加,頻譜圖主頻(dominant frequency)與副頻(side frequency)的強度明顯增加,同時往低頻的方向移動。流態由分散氣泡轉變至結合氣泡時,副頻的強度會增加到與主頻差不多;當流態轉變至塊狀氣泡時,副頻會消失且頻譜圖呈現單一低頻的主頻波峰。
實驗第二部份為氣-液-固體在生物產氫反應器內滯留量(holdup)之研究,研究發現隨著產氣速率的提升,氣體滯留量(εg)及固體滯留量(εs)有明顯的增加,同時液體滯留量(εl)逐漸減少,且在不同工作體積或是不同外觀比的生物產氫反應器中,相同的操作條件下,氣-液-固三相滯留量大約維持固定的比例。
最後,本研究建立了生物產氫反應器流動形態(分散氣泡區、結合氣泡區及塊狀氣泡區)之轉移關係式,及生物產氫反應器內氣-液兩相滯留量關係式。由於生物產氫反應器的氣體為生物代謝基質所產生的,氣體流態與傳統三相流體化床差距甚大,藉由本研究之關係式,生物產氫反應器的氣體滯留量可達86%以上之統計信心水準。
Biohydrogen production has gradually become one of an important technology on bioenergy. The flow regimes and gas-liquid-solid holdups are important properties for scale up or evaluation of the performance in a biohydrogen production reactor. As the biogas production rate rose, the flow regime in the biohydrogen production reactor were varied from the dispersed bubble regime to the coalesced bubble regime, and finally to the slugging bubble regime. Phase holdups also changed with the biogas production rate.
The experiments were carried out in the continuously stirred anaerobic bioreactor (CSABR). First, pressure sensors were used to obtain the bed pressure fluctuation data in CSABRs, and then the flow regimes can be explained correctly using the power spectrum diagrams with the bed pressure fluctuation analysis. It was found that the biogas production rate (BPR) and biomass concentration (CB) increased when decreasing in hydraulic retention time (HRT), and the power of dominant frequency and side frequency signals increased and moved to lower frequency. In addition, the power of side frequency approach to the dominant frequency when the bubble behavior changed from dispersed bubble to coalesced bubble regime. When the regime shifts to slugging bubble regime, the power spectrum diagrams showed a unique dominant frequency, and the side frequency disappeared.
At the second, the gas-liquid-solid holdups were also investigated in CSABRs. The gas holdup (εg) and solid holdup (εs) increased when biogas production rate increased, but the liquid holdup (εl) decreased. Additionally, no matter the differential aspect ratio bioreactor that the gas-liquid-solid holdups were changed slightly when the operating conditions were constant.
Finally, correlations of flow regimes transition were established in biohydrogen production bioreactor.
On the other hand, the gas and liquid holdups in biohydrogen production reactor was empirically obtained and correlated with Ug and Ul. It was found that the values of phase holdups predicted by these correlations agreed with the experimental results very well.
摘 要 I
Abstract III
目 錄 V
圖目錄 VIII
表目錄 XI
符號表 XIII
第一章 緒論 1
1.1前言 1
1.2研究目的 3
1.3研究大綱 4
第二章 文獻回顧 6
2.1生質物產氫 6
2.2暗醱酵生物法產氫 9
2.2.1 暗醱酵生物產氫之機制 13
2.2.2 暗醱酵產氫微生物 15
2.2.3 暗發酵產氫代謝路徑 18
2.2.4 暗醱酵產氫之環境因子 21
2.2.5 顆粒污泥對產氫之影響 24
2.3 流體化床之壓力擾動 25
2.3.1 壓力擾動形成之原因 25
2.3.2 不同變數對壓力擾動之影響 26
2.3.3 壓力擾動分析方法 27
2.3.4 三相反應器的壓力擾動及三相滯留量 29
2.4 不同類型反應器產氫比較 31
第三章 實驗儀器與方法 33
3.1實驗與分析藥品 33
3.1.1實驗藥品 33
3.1.2分析藥品 33
3.2 實驗裝置與儀器 34
3.2.1 實驗裝置 34
3.2.2 實驗儀器 39
3.3實驗步驟 40
3.3.1 產氫菌的來源與篩選 40
3.3.2 培養基組成 40
3.3.3 壓力擾動訊號量測 41
3.3.4 壓力擾動之頻譜分析 42
3.3.5 氣-液-固三相滯留體積 43
3.4分析方法 44
3.4.1 氣體組成分析 44
3.4.2 液體組成分析 44
3.4.3 菌量分析 45
3.4.4 粒徑分析 45
3.4.5 總糖分析 46
3.4.6 基質利用率與氫氣產率 47
3.4.7 電子顯微鏡菌相觀察 48
3.4.8 菌群組成分析 49
第四章 結果與討論 52
4.1壓力擾動頻譜分析 52
4.2局部壓力擾動頻譜分析 54
4.3連續暗醱酵產氫與頻譜分析 57
4.3.1 反應器A連續暗醱酵產氫與頻譜分析 57
4.3.2 反應器B連續暗醱酵產氫與頻譜分析 65
4.3.3 反應器C連續暗醱酵產氫與頻譜分析 74
4.4動態頻譜分析 83
4.4.1 反應器A之動態頻譜分析 83
4.4.2 反應器B之動態頻譜分析 88
4.4.3 反應器C之動態頻譜分析 91
4.5固定HRT下各反應器之頻譜圖變化 95
4.6生物產氫反應器之流動形態轉移 97
4.7生物產氫反應器菌群組成 99
4.8壓力降與生質量之關係 102
4.9生物產氫反應器之三相滯留量 104
第五章 結論與未來展望 114
5.1結論 114
5.2未來展望 117
參考文獻 118
誌 謝 127
個人簡歷 128
APHA. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, New York, USA, (1995).

Bahl H. and Dürre P. Biotechnology Vol. 1 Biological Fundamentals. pp. 286-323, (1993).

Barreto L., Makihira A. and Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario Int. J. Hydrogen Energy 28: 267-284, (2003).

Baskakov A. P., Tupongov V. G. and Fillippovsky N. F. A Study of Pressure Fluctuations in a Bubbling Fluidized Bed. Powder Technol. 45: 113-117, (1986).

Briens L. A. and Ellis N. Hydrodynamics of Three-Phase Fluidized Bed Systems Examined by Statistical, Fractal, Chaos, and Wavelet analysis methods. Chem. Eng. Sci. 60: 6094-6106, (2005).

Canganella F. and Wiegel J. The Potential of Thermophilic Clostridia in Biotechnology. The Clostridia and Biotechnology, Woods D. R. (eds.), Butterworth-Heinemann., (1993).

Caram H. S. and Hsu K. K. Bubble Formation and Gas Leakage in Fluidized Beds. Chem. Eng. Sci. 41(6): 1445-1453, (1986).

Chen C. C., Lin C. Y. and Lin M. C. Acid-base Enrichment Enhances Anaerobic Hydrogen Production Process. Appl. Microbiol. Biotechnol. 58: 224-228, (2002).

Chen S. P., Yu Z. Q., Lin Y. and Cai P. Investigation on the Vertical Division of Flow Regions in a Gas-Solid Fluidized Bed by Means of Coherence Function. Powder Technol. 75: 127-131, (1993).

Chern S. H., Fan L. S. and Muroyama K. Hydrodynamics of Cocurrent Gas-Liquid-Solid Semifluidization with a Liquid as the Continuous Phase. AIChE J. 30(2): 288-294, (1984).

Chin H. L., Chen Z. S. and Chou C. P. Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen roduction. Biotechnol. Prog. 19: 383-388, (2003).

Clark N. N., McKenzie E. A. J. and Gautam M. Differential Pressure Measurements in a Slugging Fluidized Bed. Powder Technol. 67: 187-199, (1991).

Das D. and Veziroglu T. N. Hydrogen Production by Biological Processes : a Survey of Literature. Int. J. Hydrogen Energy 26: 13-28, (2001).

de Vos M. H. P. and Ley J. D. H2 Production from Chemo Stat Fermentation of Glucose by Clostridium butyricum And Clostridium pasteurianum in Ammonium and Phosphate Limitation. Biotechnol. Lett 12(10): 731-736, (1990).

Dhodapkar S. V. and Klinzing G. E. Pressure Fluctuations Analysis for a Fluidized Bed. AIChE Sym. Ser. 296(89): 170-183, (1993).

Drahos J., Cermak J. and Schugerl K. Characterization of Axial Nonumiformity in fluidized Bed by the Amplitude of Local Pressure Drop Fluctuations. Chem. Eng. Commun 65: 49-60, (1988).

Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A. and Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 29: 350-356, (1956).

Endo G., Noike T. and Matsumoto J. Characteristics of Cellulose and Glucose Decomposition in Acidogenic Phase of Anaerobic Digestion. Proc. Soc. Civ. Engrs. 325: 61-68 (In Japanese), (1982).

Evvyernie D., Yamazaki S., Morimoto K., Karita S., Kimura T., Sakka K. and Ohmiya K. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic, Mesophilic and Hydrogen -Producing Bacterium. J. Biosci. Bioeng. 89(6): 596-601, (2000).

Fan L. S., Satija S. and Wisecarver K. Pressure Fluctuation Measurement and Flow Regime Transitions in Gas-Liquid-Solid Fluidized Bed. AIChE J. 32(2): 338-340, (1986).

Fan L. T., Ho T. C., Hiraoka S. and Walawendwe W. P. Pressure Fluctuations in a Fluidized Bed. AIChE J. 27(3): 388-396, (1981).

Fan L. T., Hiraoka S. and Shin S. H. Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Beds. AIChE J. 30(2): 246-349, (1984).

Fan Z., Chen G. T., Chen B. C. and Yuan H. Analysis of Pressure Fluctuations in a 2-D Fluidized Bed. Powder Technol. 62: 139-145, (1990).

Fang H. H. P. and Liu H. Effect of pH on Hydrogen Production From Glucose by a Mixed Culture. Bioresour. Technol. 82: 87-93, (2002).

Girbal L. and Soucaille P. Regulation of Clostridium acetobutylicum Metabolism as Revealed by Mixed-Substrate Steady-State Continuous Cultures: Role of NADH/NAD Ratio and ATP Pool. J. Bacteriol. 176: 6433-6438, (1994).

Gottschalk G. Bacterial Metabolism 2nd. Springer-Verlag, New York Inc. p. 276, (1985).

Hiby J. W. Periodic Phenomena Connected with Gas-Solid Fluidization. Proc. Int. Symp. on Fluidization pp. 99-111, (1967).

Hippe H., Andreesen J. R. and Gottschalk G. The Genera Clostridium, pp. 1800-1978. In: Albert B., Hans G. T., Martin D., Wim H. and Karl-Heinz K. (eds.), The prokaryotes. Vol II. Springer-Verlag, New York, (1991).

Hiraoka S., Shin S. H., Fan L. T. and Kim K. C. Pressure Fluctuations in a Gas-Solid Fluidized Bed–Effect of External Noise and Bubble Residence Time Distribution. Powder Technol. 38: 125-143, (1984).

Hiraoka S., Kim K. C., Shin S. H. and Fan L. T. Properties of Pressure Fluctuations in a Gas-Solids Fluidized Bed under a Free Bubbling Cindition. Powder Technol. 45(3): 245-275, (1986).

Hong S. C., Jo B. R. and Doh D. S. Determination of Minimum Fluidization Velocity by the Statistical Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Bed. Powder Technol. 60: 215-221, (1990).

Hulshoff Pol L. W., de Castro Lopes S. I., Lettinga G. and Lens P. N. L. Anaerobic sludge granulation. Water Res. 38(6): 1376-1389, (2004).

Johnson C. P., Li X. Y. and Logan B. E. Settling Velocities of Fractal Aggregates. Environ. Sci. Technol. 30: 1911-1918, (1996).

Jones D. T. and Woods D. R. Acetone-butanol Fermentation Revisited. Microbiol. Rev. 50: 484-524, (1986).

Kage H., Iwasaki N., Yamaguchi H. and Matsuno Y. Frequency Analysis of Pressure Fluctuation in Fluidized Bed Plenum. J. Chem. Eng. Japan 24(1): 76-81, (1991).

Kalia V. C., Jain S. R., Kumar A. and Joshi A. P. Fermentation of bio-waste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechnol. 10: 224-227, (1994).

Kang W. K., Sutherland J. P. and Osberg G. L. Pressure Fluctuations in a Fluidized Bed with and without Screen Cylindrical Pickings. I&EC Fundam. 6(4): 499-504, (1967).

Kang Y., Woo K. J., Ko M. H. and Kim S. D. Particle Dispersion and Pressure Fluctuations in Three-Phase Fluidized Bed. 52(21): 3723-3732, (1997).

Kataoka N., Miya A. and Kiriyama K. Studies on Hydrogen Production by Continuous Culture System of Hydrogen Producing Anaerobic Bacteria. Proc. of the 8th International Conference on Anaerobic Digestion. 2: 383-390, (1997).

Kumar N. and Das D. Continuous Hydrogen Production by Immobilized Enterobacter cloacae IIT-BT 08 Using Lignocellulosic Materials as Solid Matrices. Enzyme Microb. Technol. 29: 280-287, (2001).

Lee G. S. and Kim S. D. Pressure Fluctuations in Turbulent Fluidized Beds. J. Chem. Eng. Japan 21(5): 515-521, (1988).

Lee K. L., Son S. M., Kim U. Y., Kang Y., Kang S. H., Kim S. D., Lee J. K., Seo Y. C. and Kim W. H. Particle Dispersion in Viscous Three-Phase Inverse Fluidized Beds. Chem. Eng. Sci. 62: 7060-7067, (2007).

Leu L. P. and Lan C. W. Measurement of Pressure Fluctuations in Two-Dimensional Gas-Solid Fluidized Beds at Elevated Temperatures. J. Chem. Eng. Japan 23(5): 555-562, (1990).

Lin C.Y., Chen C. C. and Lin M. C. Production in Aanaerobic Acidogenesis Process – Influences of Thermal Isolation and Acclimation Environment. J. Chin. Inst. Environ. Eng. 10(3): 163-168, (2000).

Lirag R. C. J. and Littman H. Statistical Study of the Pressure Fluctuations in a Fluidized Bed. AIChE symp. Ser. 67(116): 11-22, (1971).

Li X. Y. and Yuan Y. Collision Frequencies of Microbial Aggregates with Small Particles by Differential Sedimentation. Environ. Sci. Technol. 36: 387-393, (2002).

Li X. Y., Yuan Y. and Wang H. W. Hydrodynamics of Biological Aggregates of Different Sludge Ages: An Insight into the Mass Transport Mechanisms of Bioaggregates. Environ. Sci. Technol. 37: 292-299, (2003).

Malina J. F. J. and Pohland F. G. Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes. Technomic. Pub. Co. USA, (1992).

Mallette M. F., Reece P. and Dawes E. A. Culture of Clostridium pasteurianum in Defined Medium and Growth as a Function of Sulfate Concentration. Appl. Microbiol. 28: 999-1003, (1974).

Matsuura A. and Fan L. S. Distribution of Bubble Properties in a Gas-Liquid-Solid Fluidized Bed. AIChE J. 30(6): 894-903, (1984).

McCarty P. L. Anaerobic Waste Treatment Fundamentals-Part Three Toxic Materials and Control. Public Work. 96: 91-94, (1964).

Morse R. D. and Ballou C. O. The Uniformity of Fluidization-Its Measurement and Use. Chem. Eng. Progr. 47(4): 199-204, (1951).

Nielsen A. T., Liu W. T., Filipe C., Grady L. J., Molin S. and Stahl D. A. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Mircoblogy 65: 1251-1258, (1999).

Palazzi E., Fabino B. and Perego P. Process Development of Continuous Hydrogen Production by Enterobacter aerogenes in a Packed Column Reactor. Bioprocess Eng. 22: 205-213, (2000).

Rachman M. A., Nakashimada Y., Kakizono T. and Nishio N. Hydrogen Production with High Yield and High Evolution Rate by Self-Flocculated Cells of Enterobacter aerogenes in a Packed-Bed Reactor. Appl. Microbiol. Biotechnol. 49: 450-454, (1998).

Razzak S. A., Barghi S. and Zhu J. X. Electrical Resistancd Tomography for Flow Characterization of a Gas-Liquid-Solid Three-Phase Circulating Fluidized Bed. 62: 7253-7263, (2007).

Sadasivan N., Barreteau D. and Laguerie C. Studies on Frequency and Magnitude of Fluctuations of Pressure Drop in Gas-Solid Fluidized Bed. Powder Technol. 26: 67-74, (1980).

Satija S. and Fan L. S. Characteristics of Slugging Regime and Transition to Turbulent Regime for Fluidized Beds of Large Coarse Particles. AIChE J. 31(9): 1554-1562, (1985).

Solomon B. O., Zeng A. P., Biebl H., Schlieker H., Posten C. and Deckwer W. D. Comparison of the Energetic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella pneumoniae and Clostridium butyricum During Anaerobic Growth on Glycerol. Biotechnology 39: 107-117, (1995).

Speece R. E. Nutrient Requirements and Biological Solids Accumulation in Anaerobic Ingestion. Advances in Water Pollution Research. 2: 305-322, (1964).

Stackebrandt E. and Rainey F. A. The Clostridia : Molecular biology Andpathogenesis. In the Clostridia : Molecular Biology and Pathogenesis. Rood J. I., McClane B. A., Songer J. G. and Titball R. W. (eds.): Academic Press: pp. 3-19, (1997).

Suzuki Y. On Hydrogen as Fuel Gas. Int. J. Hydrogen Energy. 7: 227-230, (1982).

Svoboda K., Cermark J., Hartman M., Drahos J. and Selucky K. Pressure Fluctuations in Gas-Fluidized Beds at Elevated Temperatures. Ind. Eng. Chem. Process Des. Dev. 22: 514-520, (1983).

Svoboda K., Cermark J., Hartman M., Drahos J. and Selucky K. Influence of Particle Size on the Pressure Fluctuations and Slugging in a Fluidized Bed. AIChE J. 30(3): 513-517, (1984).

Tang W. T. and Fan L. S. Hydrodynamics of a Three-Phase Fluidized Bed Containing Low-Density Particles. AIChE J. 35(3): 355-364, (1989).

Taguchi F., Hasagawa K., Taki-Saito T. and Hara K. Simultaneous Production of Xylanase and Hydrogen Using Xylan in Batch Culture of Clostridium sp. strain X53. J. Ferment. Bioeng. 81: 178-180, (1996a).

Taguchi F., Yamada K., Hasegawa K., Taki-Saito T. and Hara K. Continuous Hydrogen Production by Clostridium sp. No. 2 from Cellulose Hydrolysate in an Aqueous Two-Phase System. J. Ferment. Bioeng. 82: 80-83, (1996b).

Tanisho S., Kuromoto M. and Kadokura N. Effect of CO2 Removal on Hydrogen Production by Fermentation. Int. J. Hydrogen Energy. 23: 559-563, (1998).

Terracciano J. S., Schreurs W. J. A. and Kashket E. R. Membrance H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53: 782-786, (1987).

Ueno Y., Haruta S., Ishii M. and Igarashi Y. Microbial Community in Anaerobic Hydrogen-Producing Microflora Enriched from Sludge Compost. Appl. Microbiol. Biotechnol. 57: 555-562, (2001).

Verloop J. and Heertjes P. M. Periodic Pressure Fluctuations in a Fluidized Beds. Chem. Eng. Sci. 29: 1035-1042, (1974).

Wang G. and Wang D. I. C. Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47: 294-298, (1984).

White F. M. Viscous Fluid Flow. McGraw-Hill, New York, p. 206, (1974).

Yan R. T., Zhu C. X., Golemboski C. and Chen J. S. Expression of Solvent-Forming Enzymes and Onset of Solvent Production in Batch Culture of Clostridium butyricum. Appl. Environ. Microbiol. 54: 642-648, (1988).

Yokoi H., Ohkawara T., Hirose J., Hayashi S. and Takasaki Y. Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 80(6): 571-574, (1995).

Yokoi H., Tokushige T., Hirose J., Hayashi S. and Takasaki Y. Hydrogen Production by Immobilized Cells of Aciduric Enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng. 83: 481-484, (1997).

Yokoi H., Tokushige T., Hirose J., Hayashi S. and Takasaki Y. H2 Production from Starch by A Mixed Culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett. 20: 143-147, (1998).

Zhang J. J., Li X. Y., Oh S. E. and Logan B. E. Physical and Hydrodynamic Properties of Flocks Produced During Biological Hydrogen Production. Biotechnology and Bioengineering. 88(7): 854-860, (2004).

甘乃如,酸鹼度、水力停留時間及食微比對高濃度酒槽廢液生化產氫之影響,高雄第一科技大學環境與安全衛生工程系碩士論文,(2001)。

曲新生、陳發林,氫能技術,五南圖書出版有限公司,pp. 1-21,(2006)。

吳慶餘,基礎生命科學,藝軒圖書文具公司,pp. 90-115,(2003)。

吳石乙、白景成、林祺能、陳政群,生質產氫之三相流化反應器介紹,化工技術,pp. 129-146,(2004)。

沈遠章,三相流化床中改變操作參數對醱酵產氫之影響,逢甲大學化學工程系碩士論文,(2005)。

李安勝,生物暗醱酵產氫、高溫燃氣淨化,逢甲大學化學工程系碩士論文,(2004)。

李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄,厭氧生物產氫的研究發展,化工,(2007)。

李國興,以顆粒污泥程序進行高速厭氧醱酵產氫,逢甲大學化學工程系博士論文,(2004)。

李國鏞,普通微生物學,九州圖書文物有限公司,p. 304,(1992)。

林延金,流體化床中壓力擾動及徑向氣體混合之研究,中原大學化學工程學系博士論文,(2001)。

陳欣微,完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析,中興大學環境工程系碩士論文,(2005)。

張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,化工,第49卷,第6期,第85-104頁,(2002)。

楊立豪,以改良式SBR程序進行含糖廢水醱酵產氫之饋料進流策略最佳化探討,逢甲大學化學工程系碩士論文,(2003)。

葉韋志,不同高徑生物反應器對固定化細胞醱酵產氫之影響,逢甲大學化學工程系碩士論文,(2005)。

蔡文城,臨床微生物學:醫師實用手冊,九州圖書文物有限公司,p. 475,(2000)。

謝家琦,以合成高分子膠體固定化細胞進行填充床系統醱酵產氫,逢甲大學化學工程系碩士論文,(2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top