跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅子森
研究生(外文):Tzu-Sen Lo
論文名稱:膨脹石墨複合材料之物性分析
論文名稱(外文):Physical Properties of Exfoliated Graphite Composites
指導教授:郭文雄郭文雄引用關係
學位類別:博士
校院名稱:逢甲大學
系所名稱:機械與航空工程研究所博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:166
中文關鍵詞:膨脹石墨奈米石墨薄片
外文關鍵詞:DispersionExpanded Graphite
相關次數:
  • 被引用被引用:7
  • 點閱點閱:2318
  • 評分評分:
  • 下載下載:294
  • 收藏至我的研究室書目清單書目收藏:0
本文利用環氧樹脂及酚醛樹脂分別做為基材,不同尺寸的膨脹石墨(EG)作為補強材(填充材),來製作膨脹石墨複合材料,並以三種不同石墨尺寸,1~5 %重量百分濃度(wt. %)與基材組合而成膨脹石墨複合材料,再將酚醛樹脂基的膨脹石墨複合材料,進行1000 °C的碳化,製作出石墨/碳複合材料。第一種填充材為EG,係由天然石墨鱗片(NG)經由酸洗之化學插層法後,再進行高溫膨化而得,並以RTM法將環氧樹脂導入,固化後所得之複合材料,其中EG保持原始型態;第二種填充材為利用超音波分散技術,將EG分離成較小尺寸的 SEG,其尺寸,延C軸向,約低於EG 100倍左右,同樣的以RTM法製作複合材料,得SEG複合材料;第三種材料是利用RTM後,未固化前之EG/基材混合物,利用三滾輪分離機,將EG剝離成數十奈米等級的大小,此等級的石墨片狀材料,稱之奈米石墨薄片(GNS),再經固化而得GNS複合材料。
將所製成的各種石墨複合材料進行壓縮、衝擊、三點彎曲、熱膨脹係數、電阻係數及吸水率等測試,探討分析對材料本身的影響,也用OM及SEM來觀察研究並分析上述各種不同的奈米石墨複材之特性,研究結果發現,以GNS複合材料的奈米石墨薄片分散效果最好,所以測試出來的機械性能最佳。EG屬高比表面積的材料,在石墨複材中加入5 %重量百分濃度的EG已屬困難,若可以再提高EG的含量來製作GNS複合材料,在GNS的含量能大幅增加,相信在3C產業中,應用在複合IC的散熱上,將是淺力無窮的課題。
Three sets of expanded graphite filled polymers, having three different particle sizes, were reinforced with 1–5% by weight. The structural, mechanical and electrical properties of these composites were studied and compared. After dispersion, the particles were reduced to nanometer size through exfoliation, sonication, and high-shear strain rate mixing, which further breaks and delaminates them. In addition, scanning electron microscope characterizations were performed. The expanded graphite filled polymer material could be tailored to be high conducting. Compared with the pure polymer, the polymers filled with 5% wt. expanded graphite significantly reduce the electrical resistivity by orders. Compression, three-point-bending and impact tests were conducted. The influence of dispersion on the material behavior was studied. Some fracture modes associated with the layered microstructures of the graphite nanosheets were observed.
謝誌………………………………………………………………………I
中文摘要………………………………………………………………III
英文摘要……………………………………………………………… V
目錄……………………………………………………………………VI
圖目錄…………………………………………………………………IX
表目錄………………………………………………………………XIII

第一章 緒論……………………………………………………………1
1.1 前言………………………………………………………………1
1.2 研究動機……………………………………………………………6
1.3 研究目的 …………………………………………………………13

第二章 文獻回顧 ……………………………………………………15
高分子複合材料 ……………………………………………………15
高分子材料之背景……………………………………………………15
複合材料………………………………………………………………17
2.2 石墨 ………………………………………………………………19
2.2.1 石墨性質………………………………………………………19
2.2.2 石墨之用途……………………………………………………22
2.2.3 膨脹石墨 ………………………………………………………24
2.2.4 石墨相關研究 …………………………………………………27
2.3 石墨薄片複合材料………………………………………………29
2.3.1 石墨薄片複合材料的製造方法 ………………………………30
2.3.1.1 石墨薄片複合材料的物理製造方法………………………30
2.3.1.2 石墨薄片複合材料的化學製造方法………………………32
2.3.1.2 石墨薄片複合材料的物理化學製造方法…………………35
2.3.2 石墨薄片複合材料的應用……………………………………36
2.4 碳/碳複合材料……………………………………………………40
2.4.1 碳/碳複合材料的製造方法 …………………………………40
2.4.2 碳/碳複合材料的性能與用途 ………………………………41
2.4.3 碳/碳複合材料的缺點與改進方法 …………………………43
2.4.4 碳/碳複合材料的製造方法 …………………………………44

第三章 實驗 …………………………………………………………46
3.1 實驗流程………………………………………………………46
3.2 實驗材料………………………………………………………47
3.3 實驗設備………………………………………………………48
3.4 實驗步驟………………………………………………………49
3.4.1 膨脹石墨之製造……………………………………………49
3.4.2 石墨/環氧樹脂複合材料之製造 ……………………………50
3.4.2.1 膨脹石墨/環氧樹脂複合材料之製造 ……………………50
3.4.2.2 超音波處理石墨/環氧樹脂複合材料之製造 ……………53
3.4.2.3 石墨奈米薄片/環氧樹脂複合材料之製造 ………………55
3.4.3 石墨/酚醛樹脂複合材料之製造 ……………………………57
3.4.3.1 膨脹石墨/酚醛樹脂複合材料之製造 ……………………57
3.4.3.2 超音波處理石墨/酚醛樹脂複合材料之製造 ……………58
3.4.3.3 石墨奈米薄片/酚醛樹脂複合材料之製造 ………………58
3.4.4 石墨/碳複合材料之製造 ……………………………………59
3.5 複合材料之試驗 ………………………………………………60
3.5.1 密度之測量……………………………………………………60
3.5.2 壓縮測試………………………………………………………60
3.5.3 Izod-Type衝擊測試 …………………………………………62
3.5.4三點彎曲測試…………………………………………………65
3.5.5 熱膨脹係數之分析……………………………………………67
3.5.6 電阻係數之分析………………………………………………70
3.5.7 吸濕率之測定(Water Gain Percentage) ………………72
3.5.8 掃瞄式電子顯微鏡觀察………………………………………73

第四章 結果與討論 …………………………………………………74
4.1 試片外觀分析 …………………………………………………74
4.1.1 石墨/環氧樹脂複合材料外觀分析 …………………………74
4.1.2 石墨/酚醛樹脂複合材料外觀分析 …………………………76
4.1.3 石墨/碳複合材料外觀分析 …………………………………80
4.2 試片密度之物性分析 …………………………………………83
4.2.1 石墨/環氧樹脂複合材料密度之物性分析 …………………83
4.2.2 石墨/酚醛樹脂複合材料密度之物性分析 …………………85
4.2.3 石墨/碳複合材料密度之物性分析 …………………………87
4.3 壓縮測試 ………………………………………………………89
4.3.1 石墨/環氧樹脂複合材料之壓縮測試 ………………………89
4.3.1.1 壓縮測試之物性分析………………………………………89
4.3.1.2 壓縮測試之顯微觀察………………………………………95
4.3.2 石墨/酚醛樹脂複合材料之壓縮測試 ………………………99
4.3.2.1 壓縮測試之物性分析………………………………………99
4.3.2.2 壓縮測試之顯微觀察……………………………………103
4.3.3 石墨/碳複合材料之壓縮測試 ……………………………107
4.3.3.1 壓縮測試之物性分析……………………………………107
4.3.3.2 壓縮測試之顯微觀察……………………………………110
4.4 三點彎曲測試 …………………………………………………113
4.4.1 石墨/酚醛樹脂複合材料之三點彎曲測試 ………………113
4.4.1.1 三點彎曲測試之物性分析………………………………113
4.5 衝擊測試 ……………………………………………………117
4.5.1 石墨/環氧樹脂複合材料之衝擊測試 ……………………117
4.5.1.1 衝擊測試之物性分析……………………………………117
4.5.1.2 衝擊測試之顯微觀察……………………………………120
4.5.2 石墨/酚醛樹脂複合材料之衝擊測試……………………128
4.5.2.1 衝擊測試之物性分析 …………………………………128
4.5.2.2 衝擊測試之顯微觀察 …………………………………129
4.6 電阻係數之分析………………………………………………133
4.6.1石墨/環氧樹脂複合材料之電阻係數 ……………………133
4.6.2石墨/酚醛樹脂複合材料之電阻係數 ……………………134
4.7熱膨脹係數之分析 ……………………………………………135
4.7.1 昇溫曲線……………………………………………………135
4.7.2 熱膨脹係數(Ⅰ:以室溫25°C為溫度的原點)…………137
4.7.3 熱膨脹係數(Ⅱ:對前一點持溫點之溫度做比較) …143
4.8 吸濕率之分析 ………………………………………………148

第五章 結論………………………………………………………153

未來展望……………………………………………………………………159

參考文獻……………………………………………………………………160
1. 經濟部礦務局,http://www.mine.gov.tw/Bible/ViewMineral.asp?view=m03

2. A. K. Geim, P. Kim, “Graphene , a newly isolated from of carbon, provides a rich lode of novel fundamental physicis and practical application,” Science American, 75, 90~97(2008)

3. 邱政文,塑膠加工與複合材料,塑膠資訊,2 期, 47~48(1995)

4. M. Inagaki, “Carbon Materials Structure, Texture and Intercalations,” Solid State Ionics, 86, 833~839 (1996)

5. A. Celzard, S. Schneider, J. F. Mareche, “Densification of Expanded Graphite,” Carbon, 40, 2185~2191 (2002)

6. M. Inagaki, F. Kang, “Carbon Materials Science and Engineering¬¬From Fundamentals to Applications,” Tsinghua University Press, 439 (2006)

7. B. Debelak, K. Lafdi, “Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties,” Carbon, 45, 1727~1734 (2007)

8. G. Chen, D. Wu, W. Weng, C. Wu, “Synthesis of Carbon Nanostructures on Nanocrystalline Ni–Ni3P Catalyst Supported by SiC Whiskers” Carbon, 41(3), 579~582 (2003)

9. G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, “Preparation of Polystyrene/Graphite Nanosheet Composite,” Polymer, 44, 1781~1784 (2003)

10. B. Q. Wei, R. Vajtai, P. M. Ajayan, “Reliability and Current Carrying Capacity of Carbon Nanotubes,” Appl. Phys. Lett., 79, 1172 (2001)

11. 馬振基,高分子複合材料,國立編譯館,台北(1995)

12. 釧?o,郭文雄編著,複合材料,高立圖書有限公司,台北(1998)

13. 游錫揚,纖維複合材料,國彰出版社,台中(1992)

14. 翁慶隆,高分子複合材料之應用與未來發展,尖端材料科技協會會訊,9 期, 29 ~ 33(1994)。

15. S. K. Chatuevedi, C. P. Chao, “Thermoplastic Constitutive Mmodeling of Irradiated Polymer Composites with Matrix Property Change and Fiber-matrix Debonding,” Composites Science & Technology, 54, 201 ~ 210(1995)

16. S. K. Chatuevedi, C. P. Chao, “Thermomechanical Modeling of Irradiated -129- Polymer Composites”, Journal of Composites Materials, 28(11), 980 ~ 1008 (1994)

17. 李响、沈康、劉利亞等,膨脹石墨變形性能的研究,化學通報,(1996)

17. 袁澄波等編,石墨材料之開發利用,復漢出版社有限公司,台南,1-1~3(1999)

19. 于梅、陳玉婷,膨脹石墨特性淺析及其在阻燃方面的應用前景,廊坊師範學院學報,18(4), 70 ~ 72(2002)

20. 宋克敏、路文义,製備低硫膨脹石墨的研究,無機材料學報,(1994)

21. 李响、沈康、劉利亞等,膨脹石墨變形性能的研究,化學通報,(1996)

22. 唐偉,王旭,蔡曉良,聚丁烯(PB)/石墨複合材料的性能研究,塑料工業 樹脂改性與合金,34(9),7 ~ 9(2006)

23. C. M. Ye, B. Q. Shentu, Z. X. Weng, “Thermal Conductivity of High Density Polyethylene Filled with Graphite,” Journal of Applied Polymer Science, 101, 3806~3810(2006)

24. 莫尊理,左丹丹,陳宏,孫銀霞,張平,奈米石墨薄片/聚吡咯複合材料的製備及導電性能,無機化學學報, 23(2), 265~269(2007)

25. 江金龍,陬帢屆A環保型難燃性含矽膨脹型石墨複合材料製備、鑑定及熱性質之研究,第31屆高分子研討會(2008)

26. 應宗榮,楊坤,李靜,董慧娟,張洪春,聚丙烯/低溫可膨脹石墨阻燃複合材料的性能研究,塑料工業,34(12), 43~45(2006)

27. 唐仕英,劉曉新,鄭開偉,李迅,文潮,奈米石墨/鋁基複合材料的摩擦磨損性能,機械弁鄑鰹A 31(3), 44~46(2007)

28. T. Ramanathan, A. A. Abdala, S. Stankovich, etc., “Functionalized graphene sheets for polymer nanocomposites,” Nature Nanotechnology, 3, 327~331 (2008)

29. Mohammed A. Rafiee, Javad Rafiee, Iti Srivastava, Zhou Wang, Huaihe Song, Zhong-Zhen Yu, Nikhil Koratkar, ” Fracture and Fatigue in Graphene Nanocomposites,” Small, 6(2), 179~183(2010)

30. T. L. Wu, T. S. Lo, W. S. Kuo, “Effect of Dispersion on Graphite Nanosheet Composites,” Polymer Composites, 31(2), 292~298(2010)

31. A. K. Geim, K. S. Novoselov, “The Rise of Graphene,” Nature Materials, 6(3), 183~191(2007).

32. A. K. Geim, Philip Kim, “Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications, ” Carbon Wonderland, (2008)

33. I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, “Ultrahigh electron mobility in suspended graphene” Solid State Communications, 146(9-10), 351~355(2008)

34. L. Falkovsky, “Symmetry Constraints on Phonon Dispersion in Graphene,” Physics Letters A, 372(31), 5189~5192(2008)

35. N. Grossiord, J. Patrick, J. Loos, J. Meuldijk, A. Kyrylyuk, S. Paul, K. Cor, “On The Influence of The Processing Conditions on The Performance of Electrically Conductive Carbon Nanotube/Polymer Nanocomposites”, Polymer, 49(12), 2866~2872(2008)

36. R. Colin Johnson , IBM claims noise reduction for graphene FETs 96 W. Katsunori, “Peculiar Electronic Transport Properties of Disordered Nanographene Ribbons,” Journal of Physics and Chemistry of Solids, 69(5-6), 1162~1164(2008)

37. P. Shemella , Y. Zhang , M. Mailman , “Energy Gaps in Zero-Dimensional Graphene Nanoribbons,” Appl. Phys. Lett., 91, 042101 (2007)

38. X. S, M. Xiao, Z. Meng, “Facile Synthesis of Highly Conductive Polyaniline/Graphite Nanocomposites,” European Polymer Journal, 40, 1489~1493(2004)

39. A. Taroni, “Graphene is the Way Forward : Nanocomposites,” Nano Today, 3(3-4), 8(2008).

40. B. Jeroen, “Graphene : From Strength to Strength,” Nature Nanotechnology, 2, 199~201(2007).

41. W. Katsunori, “Peculiar Electronic Transport Properties of Disordered Nanographene Ribbons,” Journal of Physics and Chemistry of Solids, 69(5-6), 1162~1164(2008).

42. 稻垣道夫,大谷杉郎,大谷朝男,碳材料纖維工學,123(2006)

43. Michael C Y Niu, “Composite Airframe Structure,” 62~65(1992)

44. John Delmonte, “Technology of Carbon and Graphite Fiber Composite,” Von Nostrand Rein Hold Company, NY, 403(1984)

45. G. Savage, “Carbon/Carbon Composite,” chap. 6,. Chapman & Hall, London(1993)

46. E. Fitzer, "The Future of Carbon/Carbon Composites,” Carbon, 25, 163(1987)

47and Transverse Shear Loads,” Composites Science and Technology, 62(7-8), 989~999(2002)

48. Y. Z. Pappas, Y. P. Markopoulos, V. Kostopoulos, “Failure Mechanisms Analysis of 2D Carbon/Carbon Using Acoustic Emission Monitoring,” NDT & E International, 31(3) , 157~163(1998)

49. K. Christ, K.J. Hüttinger, “Carbon-Fiber-Reinforced Carbon Composites Fabricated with Mesophase Pitch,” Carbon, 31(5), 731~750(1993)

50. C. R. Tomas, “Essential of Carbon/Carbon Composites,” Formerly Ministry of Defence, AWE, Aldermaston(1993)

51. L. E. Jones, P. A. Thrower, “Extent Abstracts 18 Biennial Conference on Carbon,” 468 American Carbon Society, San Diego(1987)

52. D. W. Mckee, C. L. Spiro, E. J. Lamby, “Inhibition of Graphite Oxidation by Phosphorus Additives,” Carbon, 22, 285(1984)

53. D. W. Mckee, C. L. Spiro, E. J. Lamby, “The Effects of Boron Additives on the Oxidation Behavior of Carbons,Carbon, 22, 507~511(1984)

54. E. Fitzer, J. Cziollek, Jacobsen, “Influence of Carbonization Shrinkage on Mechanical Properties of CFRC,” Carbon, 20, 149(1982)

55. D. W. Mckee, “Oxidation behavior and protection of carbon/carbon composites,” Carbon, 25, 551~557(1987)

56. W. V. Kotlensky, “Deposition of Pyrolytic Carbon in Porous Solids,” Chemistry and Physics of Carbon, 9, 173(1973)

57. E. Fitzer, K. H. Geigl, W. Huettner, “Ceramic Matrix Composites,” Carbon, 18, 265~270(1980)

58. L. M. Manocha, O. P. Bahl, “Influence of carbon fiber type and weave pattern on the development of 2D carbon-carbon composites,” Carbon, 26(1), 13~21(1988)

59. E. Fitzer, K. H. Geigl, W. Heuttner, ”Carbon/Carbon Composites,” Proc. 5th Conf. on Carbon and Graphite, London, 1, 493(1978)

60. Erik T. Thostenson, Tsu-Wei Chou, “Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites”, Carbon, 44, 3022~3029 (2006)

61. R. Fisher, J. Krone, B. Lin, P. J. C. Chou, D. Ding, K. Lo, “Performance Testing of Tennis Rackets Manufactured from Uniderection Thermqplastic Composite Tape,” Proc. Of 39th International SAMPE Symposium, 997~1007(1994).

62. C. H. Sheng, G. S. Springer, “Moisture Absorption and Desorption of. Composite Materials,” Journal of Composite Material, 10, 2~20(1976)

63. G. S. Springer, “Environmental Effects on Epoxy Matrix Composites”, Composite Materials: Testing and Desian, ASTM STP 674, 291~312(1979).

64. S. W. Tsai, H. T. Hahn, “Introduction to Composite Mterials,” Technomic Publishing Co., Westpost, CT, 329~340(1980).

65. T. W. Chou, “Microstructural Design of Fiber Composites,” Cambridge University Press, 374~422(1992).

66. 吳宗霖,奈米碳薄片複合材料之製程與物性分析,逢甲大學機械與航空工程研究所博士論文(2008)

67. T. S. Lo, W. S. Kuo, C. C. Cheng, “Material Characterization of Graphite Nanosheet Composites,” Polymer Composites, in press, (online publication, 30 NOV 2010, DOI: 10.1002/pc.21051)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top