[1] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Field,”Proceedings of the Royal Society of London, Vol. 119, pp. 173-181, 1928.
[2] R. Saito, “Physical Properties of Carbon Nanotubes,” Imperial College Press, pp. 11, 1998.
[3] 江玟聰,”透過選區成長奈米碳螺旋線圈以製作場發射陣列”,大同大學光電工程研究所,台灣,2014.
[4] 陳柏瑄,”場發射陣列製作與應用”,大同大學光電工程研究所,台灣,2015.
[5] BartłomiejCichy, Anna Górecka-Drzazga,Jan A.Dziuban, “Field-emission light sources utilizing carbon nanotubes and composite phosphor made of SiO2 nanospheres covered with Y2O3 : Eu” Journal of Vacuum Science & Technology B 27, pp. 757, 2009.
[6] Gang Chen,Lan Zhang, Huizhong Ma, Ning Yao, Binglin Zhang, “Carbon Nanotubes Cathode of Field Emission Lamp Prepared by Electrophoretic Deposition” Energy Procedia 16, pp. 240-243, 2012.
[7] J. Roberson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, Vol. 37, pp. 129-281, 2002.
[8] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
[9]J. H. Schon, Ch. Kloc, and B. Batlogg, “High-temperature superconductivity in lattice-expanded C60,” Science, vol. 293, pp. 2432-2434, 2001.
[10] W. Jacob, W. Moller, “On the structure of thin hydrocarbon flims,” Applied Physics Letters, Vol. 63, pp. 1771-1773, 1993.
[11]N. G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, S. T. Lee, “Uniform carbon nanoflake films and their field emissions,” Chemical Physics Letters, Vol. 358, pp. 187–191, 2002.
[12] M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon, Vol. 45, pp. 2229–2234, 2007.
[13] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, “Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition,” Carbon, Vol. 42, pp. 2867–2872, 2004.
[14] S. Wang, J. Wang, Peter Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao,B. C. Holloway, D. Manos, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Applied Physics Letters, Vol. 89, pp. 103-183, 2006.
[15] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[16] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993.
[17] 沈曾民,”新型碳材料”,材料科學與工程出版中心,北京,159頁,2006.
[18] S. Motojimaa, S. Asakuraa, M. Hirataa, H. Iwanagab., ”Effect of metal impurities on the growth of micro-coiled carbon fibres by pyrolysis of acetylene,” Materials Science and Engineering B, Vol. 34, pp. 9-11, 1995.
[19] Nobuharu O. , Shoji H. , Toshiki G. , and Yoshikazu N.,”Synthesis of Carbon Tubule Nanocoils Using Fe−In−Sn−O Fine Particles as Catalysts.” J. Phys. Chem. B, Vol. 109, pp. 17366–17371, 2005.
[20] D. Y. Ding, J. N. Wang, Z. L. Cao, J. H. Dai, F. Yu., “Ni–Ni3P alloy catalyst for carbon nanostructures,” Chemical Physics Letters, Vol. 371, pp. 333-336, 2003.
[21] L. Pan., T. Hayashida., A. Harada., Y. Nakayama., ”Effects of iron and indium tin oxide on the growth of carbon tubule nanocoils.” Physica B, Vol. 323, pp. 350-351, 2002.
[22] Chang, N. K., Chang, S. H. “High-yield synthesis of carbon nanocoils on stainless steel.” Carbon, Vol. 46, pp. 1106-1109, 2008.
[23] Yongkui W, Zengmin S., “Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis.” Carbon, Vol. 39, pp. 2369-2386, 2001.
[24] L. Pan, T. Hayashidaa, A. Haradab, Y. Nakayama,“Growth mechanism of carbon nanocoils,” Journal of Applied Physics, Vol. 91, No. 12, pp. 10058-10061, 2002.
[25] 陳品文,“以均溫置換法製備鐵、鈷與鎳觸媒成長奈米碳管及SiO2緩衝層對奈米碳管成長之影響”碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第12-19頁,2007.[26] 成會明、張勁燕,“奈米碳管”,五南圖書出版公司,台北,第575-582頁,2004.
[27] 許添順,“化學置換程序回收氯化銅蝕刻廢液之研究,”,碩士論文,中央大學環境工程研究所,桃園,第22頁,2002.[28] 翁秀蓉,“奈米碳螺旋線圈之成長製程及場發射特性研究,”,碩士論文,國防大學理工學院應用化學及材料科學系,桃園,第65-68頁,2010.[29] Carole E. Baddour, D. Chester Upham, Jean-Luc Meunier. “Direct and repetitive growth cycles of carbon nanotubes on stainless steel particles by chemical vapor deposition in a fluidized bed.” Carbon, Vol. 48, pp. 2652-2656, 2010.
[30] Xiaosi Qi., W. Zhonga., Yu. Denga., C. Au., Y. Du., “Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 °C and their magnetic properties,” Carbon, Vol. 48, pp. 365-376, 2010.
[31] Y. Liu., Z Shen., “Preparation of carbon microcoils and nanocoils using activated carbon nanotubes as catalyst support,”Carbon, Vol. 43, pp. 1557-1558, 2005.
[32] G. T. A.Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, Vol. 86, pp. 1536-1551, 1998.
[33] H. Seidel, ”The mechanism of anisotropic silicon etching and its relevance for micromachining,” Proceedings of Transducers, pp.120-130, 1987.
[34] K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, “Anisotropic etching properties of silicon in KOH and TMAH solutions,” Micromechatronics and Human Science(MHS '98.), pp. 65-70, 1998.
[35] J. H. Schon, Ch. Kloc, and B. Batlogg, “High-Temperature Superconductivity in Lattice-Expanded C60,” Science, Vol. 293, pp. 2432-2434, 2001.
[36]Lab2 二氧化矽(SiO2)遮罩蝕刻 - 國立高雄第一科技大學機械系余志成 © 2007
[37] L. Pan, Y. Konishi, H. Tanka, O. S,T. Nosaka ,and Y .Nakayama,“Effect of morphology on field emission properties of carbon nanocoils and carbon nanotubes,”Japanese Journal of Applied Physics, Vol. 44, No. 4A, pp. 1652–1654, 2005.
[38] Pan, L. J., Hayashida, T. C., Zhang M., and Nakayama, Y., “Field emission properties of varbon tuble nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. 1235-1237, 2001.
[39]Shogo. H, L. Pan, Y. Konishi, H. Tanka, and Y. Nakayama, “Field emission properties and structural changes of a stand-alone carbon nanocoil,”Japanese Journal of Applied Physics, Vol. 46, No. 23, pp. L565–L567, 2007.
[40] X. Che, S. Motojima, H. Iwangac., “Vapor phase preparation of super-elastic carbon micro-coils,” Journal of Crystal Growth, Vol. 237-239, pp. 1931-1936, 2002.
[41] K. Yamamotoa, T. Hirayamab, M. Kusunokib, S. Yangc, S. Motojimac, “Electron holographic observation of micro-magnetic fields current-generated from single carbon coil,” Ultramicroscopy, Vol. 106, pp. 314-319, 2006.
[42] X. Chen., S. Motojima., H. Iwanaga., “Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties,” Vol. 37, pp. 1825–1831, 1999.
[43] S. Motojima, Y. Noda, S. Hoshiya and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region,” Journal of Applied Physics, Vol. 94, No.4, pp. 23-25, 2003.
[44] Z. Zhang, P. He, Z. Sun, T. Feng, Y. Chen, H. Li, B. Tay, “Growth and field emission property of coiled carbon nanostructure using copper as catalyst,” Journal of applied physics, Vol. 94, No. 4, pp. 23-25, 2009.
[45] W. Y. Sung, J. Girl, W. J. Kim, S. M. Lee, S. C. Yeon, H. Y. Lee and Y. H. Kim, “Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips,” Nanotechnology, Vol. 18, No. 24, pp. 245-603, 2007.
[46] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Eds.), “Carbon Nanotubes:Synthesis, Structure, Properties, and Applications,” Top. Appl. Phys. 80 Springer Berlin Heidelberg, pp. 287-328, 2001.
[47] F. A Lindemann, “The calculation of molecular vibration frequencies,” Physik. Z., vol. 11, pp. 609-612, 1910.
[48]F. G. Shi, “Size dependent thermal vibrations and melting in nanocrystals,” Journal of Materials Research, Vol. 9, pp. 1307-1314, 1994.
[49] E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, “VLS-growth of carbon nanotubes from the vapor,” Chemical Physics Letters, Vol.317, pp. 65-70, 2000.
[50] De-Chang Li, Liming Dai, Shaoming Huang, Albert W. H. Mau, Zhong
L. Wang,“Structure and growth of aligned carbon nanotube films by pyrolysis,” Chemical Physics Letters, Vol. 316, pp. 349-355, 2000.
[51] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire,“Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, Vol. 315, pp. 25-30, 1999.
[52]Yahachi Saito, Sashiro Uemura, “Field emission from carbom nanotubes and its application to electron sources,” Carbon, Vol. 38, pp. 169-182, 2000.
[53] S. Iijima, Ichihashi T.,“Single-shell carbon nanotubes of l-nm diameter, ” Nature, Vol. 363 ,pp. 603-605, 1993.
[54] T. Guo, P. Nikolaev, A.Thess, D.T. Colbert, R.E.Smalley, “Catalytic growth of single-walled nanotubes by laservaporization,” Chemical Physics Letters, Vol. 243, pp. 49-54, 1995.
[55] W. K Master, E.Munoz, M.T.Maryinez, A.M.Benito, G.F.de la Fuente, “Study of parameters important for the growth of single wall carbon nanotubes,” Optical Materials, Vol. 17, pp. 331-334, 2001.
[56] Masako Yudasaka,ToshinariIchihashi,ToshikiKomatsu,Sumio Iijima, “Single-wall csrbon nanotubed formed by a single laser-beam pulse,”Chemical Physical Letters, Vol. 299, pp. 91-96, 1999.
[57]A.C.Dillon,P.A.Parilla,J.L.Alleman,J.D.Perkins,M.J.Heben, “Controlling single-wall nanotube diameters with variatiov laser pulse power,” Chemical Physical Letters, Vol. 316, pp. 13-18, 2000.
[58] H. M. Cheng, F. LU, G. SU, H. Y. Pan, L. L. HE, X. Sun, M. S, Dreeelhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett., Vol. 72, pp. 3282-3284, 1988.
[59] Chris Bower,Wei Zhu, Sungho Jin and Otto Zhou, “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., Vol. 77, pp. 830-832, 2000.
[60] M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., Vol. 77, pp. 34-68, 2000.