跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳懷舜
研究生(外文):Huai-Shun Chen
論文名稱:單電感雙輸出的降壓和升壓直流對直流轉換器於虛擬連續傳導模式之分析與模型建立
論文名稱(外文):Analysis and Modeling of SIDO Buck-Boost DC-DC Converter Operating in PCCM
指導教授:吳紹懋
指導教授(外文):Sau-Mou Wu
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:SIDOPCCM
外文關鍵詞:單電感雙輸出虛擬連續傳導模式
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對操作於虛擬連續信號模式之單電感雙輸出的升降壓切換式直流對直流轉換器進行分析與模型建立。並依此分析結果以MATLAB建立自動設計平臺SIDOLA。設計者只須於圖形介面輸入轉換器需求,SIDOLA即可計算系統及電路參數,並自動模擬相互/線性/負載的調節、 暫態響應和分析轉換器的穩定性。
由於兩個輸出節點之間存在交叉干擾,對系統的穩定性存在一定的影響,使得轉換器系統回授關係變得複雜;也因此,必須特別加強穩定性分析與補償設計,由相位邊界和奈奎斯特分析去判斷補償系統和轉換器模擬結果的穩定性。我們特地利用SIDOLA 試算一個實例,藉由 SIDOLA 所計算出設計參數,並使用HSPICE以台積電 0.35um 2P4M CMOS 製程參數來實現電路。根據模擬的結果 此直流對直流轉換器的最大輸出漣波電壓在23毫伏以下,而輸出電流範圍在40mA到120mA之間。直流對直流轉換器之操作頻率為0.3百萬兆赫。在輸入電壓範圍在1.8V到2.0V之間,產生升壓及降壓的輸出電壓為 1.2V和2.4V。


In this thesis, a single-inductor-double-output (SIDO) switching DC-DC converter in operating pseudo continuous conduction mode (PCCM) is studied. The system is thoroughly analyzed and the steady-state as well as the small signal models is established. Based on the models, an automatic design platform, SIDOLA, in MATLAB is built such that according to the provided system requirements, SIDOLA can generate all the required design parameters as well as the corresponding behavioral simulations including line/load/cross regulations, transient responses and stability analyses.
Special efforts have been made for system stability analysis while there exist cross interferences between the two output nodes. Due to the cross interferences, the feedback system becomes complicated; therefore, sophisticated compensation schemes for system stability have been proposed and the results are examined by means of phase margin tests and Nyquist analyses.
Following the design parameters calculated by SIDOLA, an HSPICE model of a design example was made in the TSMC 0.35um 2P4M CMOS process. According to the simulation results, the maximum peak-to peak output voltage ripple is less than 23mV and the output current ranges are between 40mA and 120mA. The DC-DC converter operates at a frequency in 0.3 MHz and a supply voltage ranging from 1.2 to 2.4V. The buck and boost output voltage holds 1.2V and 2.4V.


摘要 i
Abstract ii
Acknowledgement iv
List of Contents v
List of Tables viii
List of Figures ix
Chapter 1 1
Introduction 1
1.1 Background 1
1.1.1 Linear Regulator 2
1.1.2 Switching Regulator 3
1.2 Multiple Output 3
1.3 Organization 5
Chapter 2 6
Fundamentals of SIDO Regulator 6
2.1 The Basic Principles of SIDO Buck-Boost Converter 6
2.1.1 Discontinuous Conduction Mode 8
2.1.2 Continuous Conduction Mode 9
2.1.3 Pseudo Continuous Conduction Mode 11
2.2 Specifications of Switching Regulator [4] 12
2.2.1 Line Regulation 12
2.2.2 Load Regulation 12
2.2.3 Output Voltage Ripple 13
2.2.4 Temperature Regulation 13
2.2.5 Cross Regulation 13
2.2.6 Transient Response 14
2.2.7 Efficiency 17
Chapter 3 20
Steady-State Converter Analysis 20
3.1 Operation Mode of the SIDO Buck-Boost Converter 20
3.1.1 Duty Cycle Relationship between Vin and Vout 21
3.2 Duty Cycle Equations of Steady-State 23
3.2.1 Constant DC-Level 26
3.2.2 Dynamic DC-Level 28
3.3 Digital Controller [7] 29
3.3.1 Digital Control Circuit 30
Chapter 4 33
Analysis and Simulation of Current Mode SIDO Buck-Boost Regulator 33
4.1 Current Mode SIDO Buck-Boost regulator [7] 33
4.1.2 Current Compensation 35
4.2 AC Equivalent Circuit 37
4.2.1 Small-Signal Equations 41
4.2.2 Analysis of SIDO Converter Transfer Function 43
4.2.3 Complete Block Diagram [8] 47
4.3 Stability in Whole System [8][9] 50
Chapter 5 61
Automatic Design System in Matlab 61
5.1 Specification of Converter 61
5.1.1 Feedback Loop Analysis and Compensator 66
5.2 Compensator Regulation 67
Chapter 6 70
Design Example and Hspice Simulation 70
6.1 Current Sensor Module for SIDO Buck-Boost Converter 70
6.1.1 Inductor Current Sensor Circuit [3] 71
6.1.2 Charge Reservation Circuit [3] 72
6.1.3 Band Gap Circuit [11] 75
6.1.4 Error Op Amp 78
6.1.5 Comparator [23] 79
6.1.6 Output Filter Design 81
6.2 System Results 83
Chapter 7 89
Conclusions and Future Work 89
7.1 Conclusions 89
7.2 Future Work 91
Bibliography 91


[1] Jeff Falin, “Choosing the right dc/dc converter IC topology, ” Texas Instruments, Http://www2.electronicproducts.com/Choosing_the_right_dc_dc_converter_IC_topology-article-augti1-aug2002.aspx
[2] Belloni, M., Bonizzoni, E., and Maloberti, F., “On the design of single-inductor multiple-output DC-DC buck converters,” System and Circuit 2008. ISCAS 2008. IEEE International Symposium, Page(s):3049 - 3052 May 2008.
[3] Koon, S.-C., Lam, Y.-H., & Ki, W.-H., “Integrated charge control single-inductor dual-output step-up/step-down converter,” ISCAS, 4, 3071–3074.
[4] D. Ma, W.-H. Ki, and C.-Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching”, Solid-State Circuits, IEEE Journal, pp.1007 - 1014. , June 2003
[5]C. Y. Wu and T. Y. Yu, A high-efficiency synchronous CMOS switching regulator with PWM/PFM mode operation, Master Thesis, NCTU, July 2003.
[6]J. Stratakos, High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications, Ph.D. Dissertation, University of California, Berkeley, 1998.
[7]Ming-Hsin Huang, Hong-Wei Huang, Jiun-Yan Peng, Tzung-Ling Tsai,Min-Chin Lee, Ching-Sung Wang, and Ke-Horng Chen, “Single-inductor dual-output (SIDO) DC-DC converters for minimized cross regulation and high efficiency in SoC supplying systems, ” Circuits and Systems, 2007. MWSCAS 2007. 50th Midwest Symposium on, pp. 550 - 553 , 2007.
[8]R. W. Erickson, Fundamentals of power electronics, New York: Chapman and Hall, 1997.
[9] Wan-Rone Liou, Member, IEEE, Mei-Ling Yeh, and Yueh Lung Kuo, “A High Efficiency Dual-Mode Buck converter IC for Portable Applications,” IEEE tRANSACTIONS on power electronics, VOL. 23, NO. 2, MARCH 2008.
[10]Sau-Mou Wu, Chung-Lin Wu and Chia-Hsien Chang, “A New Adaptive Mode-Switching Mechanism with Current-mode CMOS DC-DC Converter,” International Symposium on Integrated Circuits, Singapore, September 2007.
[11]Sau-Mou Wu, Kai-Jie Chuang and Chia-Hsien Chang, “An Adaptive Mode-Hopping, Self-Oscillating DC-DC Converter with Full Inductor-Current Sensing Technique,” September 2009.
[12]Chen, J.-J.; Su, J.-H.; Lin, H.-Y.; Chang, C.-C.; Lee, Y.; Chen, T.-C.; Wang, H.-C.; Chang, K.-S., and Lin, P.-S., "Integrated current sensing circuits suitable for step-down DC-DC converters," Electronics Letters , vol.40, no.3, pp. 200-202, 5 Feb. 2004
[13] Sau-Mou Wu, Chung-Lin Wu, and Chia-Hsien Chang, “A New Self-Oscillating CMOS DC-DC Converter with Adaptive Mode-Switching Mechanism,” 18th VLSI Design/CAD Symposium, Taiwan, August 2007.
[14]Sau-Mou Wu and Chung-Lin Wu, “A Synchronous, Self-Oscillating, Fully Integrated CMOS DC-DC Converter with a New Adaptive Mode-Switching Mechanism,” IEEE Int’l SOC Design Conference, Korean, Oct. 2006.
[15]Sung-Mo Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and design, Third Edition, McGRAM-HILL, 2003.
[16]Wan-Rone Liou; Mei-Ling Yeh, and Yueh Lung Kuo, "A High Efficiency Dual-Mode Buck Converter IC For Portable Applications," Power Electronics, IEEE Transactions on , vol.23, no.2, pp.667-677, March 2008.
[17]Tsz Yin Man; Mok, P.K.T., and Mansun Chan, "Design of Fast-Response On-Chip Current Sensor for Current-Mode Controlled Buck Converters with MHz Switching Frequency," Electron Devices and Solid-State Circuits, IEEE Conference on , vol., no., pp.389-392, 20-22 Dec. 2007.
[18]Chi Yat Leung; Mok, P.K.T.; Ka Nang Leung, and Chan, M., "An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol.52, no.7, pp. 394-397, July 2005.
[19]D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1st ed. New York: Wiley, 1997.
[20]Jiann-Jong Chen; Fong-Cheng Yang, and Chih-Chiang Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits," Industrial Electronics, IEEE Transactions on, vol.55, no.3, pp.1101-1111, March 2008.
[21]Fong-Cheng Yang; Chih-Chiang Chen; Jiann-Jong Chen; Yuh-Shyan Hwang, and Wen-Ta Lee, "Hysteresis-Current-Controlled Buck Converter Suitable for Li-Ion Battery Charger," Communications, Circuits and Systems Proceedings, 2006 International Conference on , vol.4, no., pp.2723-2726, 25-28 June 2006.
[22]Traff, H., "Novel approach to high speed CMOS current comparators," Electronics Letters, vol.28, o.3, pp.310-312, 30 Jan. 1992.
[23]B. Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, 2001.
[24]Mok, P.K.T. and Ka Nang Leung, "Design considerations of recent advanced low-voltage low-temperature-coefficient CMOS bandgap voltage reference," Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004, vol., no., pp. 635-642, Oct. 2004.
[25]P. E. Allen and D. R. Holberg, CMOS analog circuit design, Second Edition, OXFORD, 2002.
[26]Katayama, Y.; Edo, M.; Denta, T.; Kawashima, T., and Ninomiya, T., "Optimum design method of CMOS IC for DC-DC converter that integrates power stage MOSFETs," Power Electronics Specialists Conference, vol.6, no., pp. 4486-4491, June 2004.
[27]Kursun, V.; Narendra, S.G.; De, V.K., and Friedman, E.G., "Efficiency analysis of a high frequency buck converter for on–chip integration with a dual–VDD microprocessor," Solid-State Circuits Conference, vol., no., pp. 743-746, 24-26 Sept. 2002
[28]Gildersleeve, M.; Forghani-zadeh, H.P., and Rincon-Mora, G.A., "A comprehensive power analysis and a highly efficient, mode-hopping DC-DC converter," ASIC, 2002. IEEE Asia-Pacific Conference on, pp. 153-156, 2002.
[29]Das, N. and Kazimierczuk, M.K., "Power losses and efficiency of buck PWM DC-DC power converter," Electrical Insulation Conference and Electrical Manufacturing Expo, vol., no., pp.417-423, 26-26 Oct. 2005.
[30]KEMET F3905 Data Sheet, February 2005.
[31]Coilcraft DS1608C Data Sheet, 2007.
[32]Chui, M.Y.-K.; Wing-Hung Ki, and Chi-Ying Tsui, "A programmable integrated digital controller for switching converters with dual-band switching and complex pole-zero compensation," Solid-State Circuits, IEEE Journal of , vol.40, no.3, pp. 772-780, March 2005.
[33]Feng-Fei Ma; Wei-Zen Chen, and Jiin-Chuan Wu, "A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuits," Power Electronics, IEEE Transactions on, vol.22, no.5, pp.1836-1846, Sept. 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 周文忠(2005)。虛擬實境之意義與應用,第一期資訊科學應用期刊, pp.121-127。
2. 林承宇 (2005)。《菸品間接廣告規範之國際觀察與趨勢》。傳播與管理研究,第四捲第二期,頁24-58。
3. 范如君(1998)。讓文物活了起來:博物館與文化藝術導覽。文訊雜誌,47,47-50。
4. 張振明(1992)。博物館導覽之認識與實施。博物,3(1),29-39。
5. 梁朝雲、許明潔(2001)。人機互動領域的設計議題。教學科技與媒體,58,54-66。
6. 吳淑鶯、黃淑鈴 (2003)。《影響消費者對咖啡連銷店涉入程度之前因及結果實證研究》。中華管理評論,國際學報,第六卷第六期,頁136-155。
7. 陳坤淼(2000)。電腦多媒體之使用者介面設計探討。高速計算世界,1(8), 36-45。
8. 練乃華、留淑芳 (2003)。《廣告圖片效果態度中介模式之研究》。管理評論,第二十二卷第四期,頁35-55。
9. 黃俊英、賴文彬 (1990)。《涉入的理論發展與實務應用》,管理科學學報,第七卷第一期,第15-29頁。
10. 陳亭羽、陳蓉蓉 (2008)。《應用模糊系統於產品涉入之研究-以汽車產品為例》。管理科學研究,第五卷第一期,頁61-79。
11. 祝鳳岡 (1996),《「廣告理性訴求策略」之策略分析》,廣告學研究: 8,頁1-26。
12. 祝鳳岡 (1995),《「廣告感性訴求策略分析」之策略分析》,廣告學研究: 5,頁85-112。
13. 林建煌 (1993)。《節目氣氛與音樂關聯性對廣告效果之影響研究》,廣告學研究:2,頁1-36。