跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖逸誠
研究生(外文):Yi-Cheng Liao
論文名稱:將具同時硝化脫硝能力之菌株THU固定於SBMBR系統處理高含氮廢水之研究
論文名稱(外文):Immobilization of a bacterial strain, strain THU, capable of simultaneous nitrification and denitrification in sequencing batch membrane bioreactor for treating high ammonia concentration wastewater
指導教授:黃啟裕黃啟裕引用關係
指導教授(外文):Chi-Yu Huang
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:140
中文關鍵詞:同時硝化脫硝反應固定化循序批分式薄膜反應槽
外文關鍵詞:simultaneous nitrification and denitrificationimmobilizationsequencing batch membrane bioreactor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將先前分離出具同時硝化脫硝能力之菌株THU,利用DNA序列鑑定及G+C content 比對確認菌株THU屬於Ochrobactrum菌屬,再利用DNA-DNA hybridization比對發現THU與Ochrobactrum相似度僅84.6 %,因此THU應為一株新種菌且THU發現時為一好氧脫硝菌株,故將THU命名為 Ochrobactrum aerodenitrificant。
Ochrobactrum aerodenitrificant在NH4+ 濃度為 150 mg/L以下時,其NH4+去除率可達到96.7 %。當NH4+濃度達到200 mg/L 以上時,O. aerodenitrificant會受到NH4+ 抑制此時之NH4+ 去除率在1-50 % 之間,且在此條件下菌株之比生長速率僅0-0.50 hr-1,因此O. aerodenitrificant在高NH4+ 濃度時會受到抑制。
本研究利用O. aerodenitrificant結合SBMBR系統進行批次實驗與反應槽之操作,改變五種基質條件找尋O. aerodenitrificant在反應槽中最適合操作條件,發現在C/N ratio=7 和高鹼度的條件下,能連續操作110天且能維持高的比SND速率及SCOD去除率。而此條件之最佳之NH4+去除率及SCOD去除率分別為98.1 % 和91.3 %。
The isolate was identified as a strain of Ochrobactrum using 16S rDNA sequence, G+C content and DNA-DNA hybridization (the similarity was 84.6 % between strain THU and Ochrobactrum genus), strain THU should be new specie of Ochrobactrum genus. Proposed name for strain THU, Ochrobactrum aerodenitrificant with hading denitrification capacity under aerobic, initially.
When NH4+ concentration was lower than 150 mg/L, the NH4+ removal rate could achieve 96.7 % by O. aerodenitrificant. NH4+ removal rate was between 1-50 % and the specific growth rate only 0-0.50 hr-1 of O. aerodenitrificant under high NH4+ concentration (> 200 mg/L). Thus, O. aerodenitrificant would be inhibited under high ammonia concentration.
Combination of O. aerodenitrificant and SBMBR system removes ammonia from synthetic wastewater for batch testing and reactor operating. This system could maintain high NH4+removal rate and SCOD removal rate for 110 days continuously under C/N ration=7 and alkalinity=1000 mg-CaCO3/L operation conditions. The best NH4+removal rate and SCOD removal rate are 98.1 % and 91.3 %.
目 錄
第一章 前 言……………………………………………………… 1
第二章 文獻回顧……………………………………………………… 3
2.1 氮循環………………………………………………………… 3
2.2 廢水處理……………………………………………………… 5
2.2.1 硝化反應…………………………………………………… 5
2.2.2 脫硝反應…………………………………………………...… 8
2.3 同時硝化與脫硝反應……………………………………….… 9
2.4 薄膜反應槽…………………………………………………..… 16
2.4.1 MBR之形式………………………………………………… 16
2.4.2 MBR之優點………………………………………………… 19
2.4.3 循序批分式生物薄膜反應槽……………………………..…21
2.4.4 結合具SND能力之菌株與循序批分生物薄膜反應槽法…25
2.4.5 即時控制系統監測反應之參數變化情形………………..…26
2.5 研究目的……………………………………………………….. 29
第三章 實驗方法與設計………………………………………………30
3.1 實驗流程……………………………………………………….. 30
3.2 菌種來源……………………………………………………..… 30
3.3 菌種之活化與培養…………………………………………..… 32
3.3.1 菌種之活化………………………………………………..…32
3.3.2 菌種之培養………………………………………………..…32
3.3.3 低限液態培養基…………………………………………..…33
3.4 SND菌株的生理特性再測試……………………………………34
3.4.1 溫度、pH、碳源和碳氮比……………………………………37
3.4.2 基質濃度之影響…………………………………………..…37
3.4.3 絕對厭氧測試……………………………………………..…38
3.4.4 菌株16S rDNA Sequence之鑑定……………………………38
3.4.4.1 菌種染色體DNA之抽取……………………………..… 38
3.4.4.2 洋菜膠體水平電泳……………………………………… 40
3.4.4.3 聚合酶連鍞反應………………………………………… 41
3.4.4.4 序列比對………………………………………………… 43
3.4.5 Lab-VIEW(Laboratory Virtual Instrument Engineering Workbench)電腦即時監測……………………………...… 43
3.4.6 BNP(Biochemical Nitrogen Potential)反應測試………….… 46
3.5 THU菌株固定化於薄膜反應槽之同時硝化脫硝反應……..… 49
3.5.1 反應槽之操作與架設…………………………………..……49
3.5.2 反應槽操作……………………………………………..……50
3.6 實驗分析項目與方法……………………………………..…… 53
第四章 結果與討論………………………………………………… 61
4.1 研究菌株之活化………………………………………………61
4.2 菌株生理特性再測試…………………………………………66
4.2.1 氨氮濃度對菌株THU硝化能力之影響………………… 66
4.2.2 溶氧對THU菌株之影響………………………………… 69
4.2.3 休眠菌株之硝化反應測試……………………………..… 73
4.2.4 碳氮比對菌株之影響…………………………………..… 76
4.3 菌種鑑定………………………………………………………79
4.3.1 16S rDNA gene序列分析………………………………..…79
4.3.2 研究菌株和Ochrobactrum及Brucella之生化特性探討比較……………………………………………………….…81
4.4 薄膜反應槽的批次實驗…………………………………...… 86
4.4.1 Phase 1高碳氮比及高鹼度下之反應…………………..… 88
4.4.2 Phase 2最佳碳氮比及高鹼度下之反應………………..… 89
4.4.3 Phase 3、Phase 4和Phase 5於最佳碳氮比及低鹼度下之反應………………………………………………………..…91
4.5 SND反應時之氧化還原電位及pH變化即時監測……..……94
4.5.1 高碳氮比及高鹼度下之反應………………………………94
4.5.2 最佳碳氮比及高鹼度下之反應……………………………97
4.5.3 最佳碳氮比及低鹼度下之反應……………………………99
4.6 SBMBR系統連續操作之SND反應………………...……… 101
4.6.1 高碳氮比及高鹼度下之反應……………………..……… 101
4.6.2 最佳碳氮比及高鹼度下之反應…………………..……… 104
4.6.3 最佳碳氮比及低鹼度下之反應…………………..……… 107
4.7 SND反應之Nernst equation…………………………….…… 110
4.8 菌株THU進行SND反應時之質量 平衡方程式…………114
第五章 結論與建議………………………………………………..…116
5.1 結論………………………………………………………….…118
5.2 建議………………………………………………………….…118
參考文獻………………………………………………..……….…… 120
附錄……………………………………………………………………129
附錄一 THU菌株 16S rRNA gene 序列定序結果……………….129
表 目 錄
Table 2-1. Reported bacteria that had enzymes of AMO and HAO…….. 7
Table 2-2. Reported heterotrophic nitrifying bacteria that had enzymes of
HAO………………………………………………………….. 7
Table 2-3. Bacteria that maybe have abilities of heterotrophic nitrification
and aerobic denitrification…………………………………... 11
Table 2-4. Table 2-4. Application of MBR system for treating nitrogen wastewater and reclamination water………………..……..… 19
Table 3-1. The composition of solution A…………………..………..... 34
Table 3-2. The composition of solution B……………………..………. 34
Table 3-3. The composition of solution C……………………...…….... 34
Table 3-4. The carbon, nitrogen concentration and alkalinity in the
MA……………………………………….……………….… 36
Table 3-5. The components of TE buffer………………………...……. 40
Table 3-6.The component of stock 5X TBE buffer……………………. 41
Table 3-7. The components and their concentration used in PCR…...…42
Table 3-8. The heating program of PCR…………………………….… 42
Table 3-9. Concentration of influent of SBMBR…………………...…. 52
Table 3-10. The operation condition of SBMBR…………………….... 52
Table 3-11. The analytical methods………………………………….... 60
Table 4-1. The removal rate of nitrogen and SCOD by strain THU after subculture for 3 month…………………………………….... 66
Table 4-2 Similarity of 16S rRNA gene of strain THU to Ochrobactrum sp. and Brucella sp………………………………………….. 81
Table 4-3 Comparison of biochemical characteristics between strain THU, Ochrobactrum and Brucella………………………………… 84
Table 4-4 Comparison of utilization of different substrates between strain THU, Ochrobactrum and Brucella………………………….. 85
Table 4-5 Comparison of three times operation condition of this study……………………………………………………… 111
圖 目 錄
Fig 2-1 The conversion cycle of nitrogen…………………………… 4
Fig 2-2. The pathways of simultaneous nitrification and denitrification occur in T. pantotropha……………… …………………… 12
Fig 2-3. The comparison of traditional nitrification-denitrification process
and simultaneous nitrification-denitrification process……… 13
Fig 2-4. Types of MBR: Side-stream membrane reactor (left) and Submerged membrane reactor (right)……………………….. 23
Fig 2-5. The real-time monitoring of ORP profile during nitrification and
denitrification in traditional wastewater treatment………...… 27
Fig 3-1 Flow chart of experimental design…………………………... 31
Fig 3-2 The Lab VIEW real-time monitoring system for the reaction… 45
Fig 3-3 The BNP test system………………………………………… 48
Fig 3-4. Schematic diagram of the Lab-SBMBR system……………. 50
Fig 3-5 The gas chromatographic spectrum of N2 standard…………. 57
Fig 4-1. SND reaction of strain THU after immediate retrieval from deep-freezing and subculturing……………………………… 62
Fig. 4-2 SND reaction and growing condition by strain THU after acclimating one month………………………………………. 64
Fig. 4-3 The nitrification of strain THU with different NH4+
Concentration………………………………………………..… 69
Fig. 4-4 The growth rate of strain THU with different NH4+
Concentration………………………………………………….. 69
Fig. 4-5 The nitrification efficiency and growth rate of strain THU by
using NH4+ as sole nitrogen compounds under aerobic condition.. 70
Fig. 4-6 The denitrification efficiency and growth rate of strain THU by
using NO2- as sole nitrogen compounds under aerobic condition... 71
Fig. 4-7 The denitrification efficiency and growth rate of strain THU by
using NO2- as sole nitrogen compounds under aerobic condition... 71
Fig. 4-8 The nitrification, denitrification efficiency and growth rate of
strain THU after culturing 5 days under anaerobic condition…. 74
Fig. 4-9 Nitrification by strain THU at resting stage…………………... 75
Fig 4-10 Specific growth rate of strain THU with different C/N ratio.... 78
Fig 4-11 NH4+ removal rate by strain THU under different C/N ratio.... 79
Fig 4-12 Phylogenetic tree of Ochrobactrum and Brucella constructed
from 16S rRNA gene sequences showing the position of strain
THU……………………………………………………………. 82
Fig 4-13 Effluent of nitrogen concentration, SCOD and alkalinity from
SBMBR under C/N=12 and alkalinity=1000 mg-CaCO3/L
conditions………….…………………………………………... 89
Fig 4-14 Effluent of nitrogen concentration, SCOD and alkalinity from
SBMBR under C/N=7 and alkalinity=1000 mg-CaCO3/L conditions……………………………………………………… 90
Fig 4-15 Effluent of nitrogen concentration, SCOD and alkalinity from
SBMBR under C/N=7 and alkalinity=300 mg-CaCO3/L
conditions……………………………………………………… 92
Fig 4-16 Changing of ammonia concentration and growth rate under
C/N=7 and alkalinity=0, 100 mg-CaCO3/L condition…………. 94
Fig 4-17 Real-time monitoring for the SND process with ORP and pH
under C/N ratio=12 and ALK=1000 mg-CaCO3/L……………. 95
Fig 4-18 Real-time monitoring for the SND process with ORP and pH
under C/N ratio=7and ALK=1000 mg-CaCO3/L……………… 98
Fig 4-19 Real-time monitoring for the SND process with ORP and pH
under C/N ratio=7 and ALK=300 mg-CaCO3/L………………100
Fig 4-20. Daily profiles of SCOD, DO concentration and pH of SBMBR
operating under C/N ratio=12 and ALK=1000 mg-CaCO3/L.. 102
Fig 4-21 Daily profiles of NH4+, NO2- and NO3- concentration of
SBMBR operating under C/N ratio=12 and ALK=1000
mg-CaCO3/L………………………………………………….. 104
Fig 4-22 Daily profiles of SCOD, DO concentration and pH of SBMBR
operating under C/N ratio=7 and ALK=1000 mg-CaCO3/L…..106
Fig 4-23 Daily profiles of NH4+, NO2- and NO3- concentration of
SBMBR operating under C/N ratio=7 and ALK=300
mg-CaCO3/L………………………………………………….. 108
Fig 4-24 Daily profiles of SCOD, DO concentration and pH of SBMBR
operating under C/N ratio=7 and ALK=300 mg-CaCO3/L…... 109
Fig 4-25 Daily profiles of NH4+, NO2- and NO3- concentration of
SBMBR operating under C/N ratio=7 and ALK=300
mg-CaCO3/L………………………………………………….. 110
Fig 4-26 Monitoring concentration of products during SND reaction
under different operation condition…………………………... 114
Fig 4-27 Gas production by strain THU during SND process………... 115
參考文獻
Ahn, K.H. and Song, K.G. 2000. Application of microfiltration with a novel fouling control method for reuse of wastewater from a large-scale resort complex. Desalination, 129, 207-216.
Akara, A., Utåker, J.B. and Nes, I.F. 2001. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiology Letters, 205, 237-242.
APHA, AWWA and WEF. 1995. Standard methods for examination of water and wastewaters. 19th Edition. American Public Health Association, Washington, DC, USA.
Arciero, D.M., Balny, C. and Hopper, A.B. 1991. Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea. Biochemistry, 131, 2851-2854.
Arts, P.A.M., Robertson, L.A. and Kuenen, J.G. 1995. Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures. FEMS Microbiology Ecology, 18, 305-316.
Babic, I., Saux, M.F.L., Giraud, E. and Boemare, N. 2000. Occurrence of natural dixenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhabditis spp. Microbiology, 146, 709-718.
Bodelier, P.L.E., Libochant, J.A., Blom, C.W.P.M. and Laanbroek, H.J. 1996. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Applied and Environment and Microbiology, 62, 4100-4107.
Breznk, J.A. Genus Brucella, in Bergey’s Manusl of Systematic Bacteriology vol. 1, Corbel, M.J. and Brinley-Morgan, W.J. (eds), William & Wilkins Co., Baltimore, 1984, 377-397.
Burns, L.C., Stevens, R.J. and Laughlin, R.J. 1996. Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biology and Biochemistry, 28, 609-616.
Castignetti, D. and Hollocher, T.C. 1982. Nitrogen redox metabolism of a heterotrophic nitrifying denitrifying Alcaligenes sp. from soil. Applied and Environment and Microbiology, 44, 923-928.
Castignetti, D. and Hollocher, T.C. 1984. Heterotrophic nitrification among denitrifiers. Applied and Environment and Microbiology, 47, 620-623.
Cicek, N., Dionysiou, D., Sudian, M.T., Ginestet, P. and Audic, J.M. 1999. Performance deterioration and structural changes of a ceramic membrane bioreactor due to inorganic abrasion. Journal of Membrane Science, 163, 19-28.
Chang, C.N., Ho, C.F., Chen, Y.R., Chao, A. and Ma, Y.S. 2002. Reclamination wastewater by sequencing batch membrane bioreactor (SBMBR). Journal of Chinese Environmental Engineering, 12, 295-305.
Chang, C.N., Cheng, H.B. and Chao, A.C. 2004. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification process. Environment Science and Technology, 38, 1807-1812.
Chang, Y.J. and Tseng, S.K. 1999. A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Letters in Applied Microbiology, 28, 453-456.
Chiu, Y.C. and Chung M.S. 2003. Determination of optimal COD/nitrate ratio for biological denitrification. International Biodeterioration and Biodegradation, 51, 43-49.
Côté, P., Buisson, H., Pound, C. and Arakaki, G. 1997. Immersed membrane activated sludge for the re-use of municipal wastewater. Desalination, 113, 189-196.
Delogado, S., Diaz, F., Villarroel, R., Vera, L., Diaz, R., and Elmaleh, S. 2002. Nitrification in a hollow-fibre membrane bioreactor. Desalination, 146, 445-449.
Fan, X.J., Urbain, V., Qian, Y., Manem, J., Ng, W.J. and Ong, S.L. 2000. Nitrification in a membrane bioreactor (MBR) for wastewater treatment.
Water Science and Technology, 42, 289-294.
Gander, M., Jefferson, B., and Judd, S. 2000. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 18, 119-130.
Ghyoot, W., Vandaele, S. and Verstraete, W. 1999. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor. Water Research, 33, 23-32.
Glass, C. and Silverstein, J. 1998. Denitrification kinetics of high nitrate concentration waster: pH effect on inhibition and nitrite accumulation. Water Research, 32, 831-839.
Glass, C., and Silverstein, J. 1997. Inhibition of denitrification in activated sludge by nitrite. Water and Environment Research, 69, 1086-1093.
Gupta, A.B. and Gupta, S.K. 1999. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Water Research, 33, 555-561.
Gupta, A.B. and M. Kshirsagar. 2000. Quantitative estimation of Thiosphaera pantotropha from aerobic mixed culture. Water Research, 34, 3765-3768.
Hasar, H., Cumali, K., Ayhan, U., and Ubeyde, Ì. 2001. Role of intermittent aeration in domestic wastewater treatment by submerged membrane activated sludge system. Desalination, 142, 287-293.
Head, I.M., Hiorns, W.D., Embley, T.M., McCarthy, A.J. and Saunders, J.R. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology, 139, 1147-1153.
Ho, C.M., Tseng, S.K. and Chang, Y.J. 2002. Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Letters in Applied Microbiology, 35, 481-485.
Holmes, B., Popoff, M., Kiredjian, M. and Kersters, K. 1988. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. International Journal of Systematic Bacteriology, 38, 406-416.
Hsieh Y.L, Tseng S.K., and Chang Y.J. 2003. Nitrogen removal from wastewater using a double-biofilm reactor with a continuous-flow method. Bioresource Technology, 88, 107-113.
Jefferson, B., Laine, A.L., Stephenson, T. and Judd, S.L. 2001. Advanced biological unit processes for domestic water recycling. Water Science and Technology, 43, 211-218.
Jetten, M.S.M., Logemann, S., Muyzer, G., Robertson, L.A., Devries, S., Van L.M.C. and Kuenen, J.G. 1997. Novel principles in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek, 71, 75-93.
Jetten, M.S., de Bruijn, P. and Kuenen, J.G. 1997. Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie van Leeuwenhoek, 71, 69-74.
Kim, H. and Hao, O.J. 2001. pH and oxidation-reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system. Water and Environment Research, 73, 95-101.
Koyuncu, I., Kural, E. and Topacik, D. 2001. Pilot scale nanofiltration membrane separation for waste management in textile industries. Water Science and Technology, 43, 233-240.
Kumar, S., Tamura, K., Jakobsen, I. B. and Nei, M. 2001. Mega2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244-1255.
Livingston, A.G., Arcangeli, J.P., Boam, A.T., Zhang, S., Marangon, M. and Freitas, L.M. 1998. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science, 151, 29-44.
Machenbach, I. 1998. Membrane technology for dyehouse effluent treatment. Memmbrane Technology, 96, 7-10.
Matëju, V., Cizinská, S., Krejčı, J. and Janoch, T. 1992. Biological
water denitrification-a review. Enzyme and Microbial Technology, 14,
170-183.
Moir, J.W., Wehrfritz, J.M., Spiro, S. and Richardson, D.J. 1996. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Letters, 387, 71-74.
Mutlu, S.H., Yetis, U., Gurkan, T. and Yilmaz, L. 2002. Decolorization of wastewater of a baker’s yeast plant by membrane processes. Water Research, 36, 609-616.
Noor, M.J.M.M., Nagaoka, H. and Aya, H. 2002. Treatment of high strength industrial wastewater using extended aeration-immersed microfiltration (EAM) process. Desalination, 149, 179-183.
Pankhania, M., Brindle, K. and Stephenson, T. 1999. Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation. Chemical Engineering Journal, 73, 131-136.
Patureau, D., Bernet, N. and Moletta, R. 1997. Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Comamonas sp. strain SGLY2. Water Research, 6, 1363-1370.
Pierre, C., Buisson, H. and Pound, C. 1997. Immersed membrane activated sludge for the rense of municipal wastewater. Desalination, 113, 189-196.
Pochana, K. and Keller, J. 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 39, 61-68.
Puzuava, N., Payraudeau, M. and Thornberg, D. 2001. Simultaneous nitrification and denitrification in biofilters with real time aeration control. Water Science and Technology, 43, 269-276.
Robertson, L.A., and Kuenen, J.G. 1983. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Journal of General Microbiology, 129: 2847-2855.
Robertson, L. A., and J. G. Kuenen. 1988. Heterotrophic nitrification on Thiosphaera pantotropha: oxygen uptake and enzyme studies. Journal of General Microbiology, 134, 857-863.
Robertson, L.A., W.J. VANNiel, Torremans, E.D. Rob, A.M. and Kuenen, J.G. 1988. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appllied Environment and Microbiology, 54, 2812-2818.
Robertson, L.A., Dalsgaard, T., Revsbech, N.P. and Kuenen, J.G. 1995. Confirmation of aerobic denitrification in batch cultures, using gas chromatography and N mass spectrometry. FEMS Microbiology Ecology, 18, 113-120.
Rozzi, A., Malpei, F., Bianchi, R. and Mattioli, D. 1999. Membrane treatment of secondary textile effluents for direct use. Water Science and Technology, 40, 409-416.
Saitou, N. and Nei, M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
Satoh, H., Nakamura, Y., Ono, H. and Okabe, S. 2003. Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnology and Bioengineering, 83, 604-607.
Schmidt, I., and Bock, E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of Microbiology, 167, 106-111.
Schulthess, R.V., Gujer, W. 1996. Release of nitrous oxide (N2O)
from denitrifying activated sludge: verification and application of a
mathematical model. Water Research, 30, 521-530.
Shim, J.K., Yoo, I.K. and Lee Y.M. 2002. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor. Process Biochemistry, 38, 279-285.
Shin, H.S., Lee, S.M., Seo, I.S., Kim, G.O., Lim, K.H. and Song, J.S. 1998. Pilot-scale SBR and MF operation for removal of organic and nitrogen compounds from greywater. Water Science and Technology, 38, 79-88.
Su, J.J., Lin, B.Y. and Liu, C.Y. 2001. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. Journal of Appllied Microbiology, 90, 457-462.
Sun, D.D., Zeng J.L. and Tay, J.H. 2002. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment. Water Science and Technology, 47, 105-111.
Surampalli, R.Y., Tyagi, R.D., Scheible, O.K. and Heidman, J.A. 1997. Nitrification, denitrification and phosphorus removal in sequential batch reactors. Bioresource Technology, 61, 151-157.
Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T. and Urushigawa. Y. 1994. Ammonium-oxidizing bacteria with different sensitives to (NH4)2SO4 in activated sludges. Water Research, 28, 1523-1532.
Tenno, R. and Paulapuro H. 1999. Removal of dissolved organic compounds from paper machine whitewater by membrane bioreactors: a comparative analysis. Control Engineering Practice, 7, 1085-1099.
Teske, A., Alm, E., Regan, J.M., Toze, S., Rittmann, B.E. and Stahl D.A. 1994. Evolutionary relationships among ammonia-oxidizing and nitrite-oxidizing bacteria. Journal of Bacteriology, 176, 6623-6630.
Ueda, T. and Hata, K. 1999. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Water Research, 33, 2888-2892.
Ueda, T. and Horan, N.J. 2000. Fate of indigenous bacteriophage in a membrane bioreactor. Water Research, 34, 2151-2159.
Van Loosdrecht, M.C.M., and Jetten M. S. M. 1998. Microbiological conversions in nitrogen removal. Water Science and Technology, 38, 1-7.
Yamamoto, K., Hiasa, M., Mahmood, T. and Matsuo, T. 1989. Direct solid—liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science and Technology, 21, 43-54.
Zeng, R.J., Lemaire, R., Yuan Z. and Keller J. 2003. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, 84, 170-178.
何君甫。2001a。循序批分式濾膜生物反應槽程序處理含碳、氮、磷
廢水及其線上控制之研究。東海大學環科所碩士論文。
何盈蒼。2001b。好氧處理脫硝菌株THU之分離與研究及其同時硝化
-脫硝反應之探討。東海大學環科所碩士論文。
邱志成。2000。以生物濾床與浸水式生物濾膜槽做為水回收處理設備
之探討。東海大學環科所碩士論文。
彭名琛。2002。養殖環境中氨氧化菌之研究。中山大學海資所碩士論
文。
陳旻谷。2003。菌株Achromobacter Xylosoxidans 同時硝化脫硝之特
性研究。台灣大學環工所碩士論文。
蔡宜宸、李季眉。1998。好氧脫硝菌株Acinetobacter sp.對好氧活性污泥脫硝作用之影響,第二十三屆廢水處理技術研討會論文集,278-285。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林佳慧(1994):淺談戲劇對幼兒教育之助益。國教輔導,33期,頁2-7。
2. 周榮杰(1998):淺介台灣皮影戲。高市文獻,4期,頁1-28。
3. 李訓智(1994):70年代「芝麻街」的創新傳佈。視聽教育雙月刊,35期,頁37-44。
4. 吳聲淼(2002):九讚頭客家布偶劇團──台灣第一個客家兒童布偶劇團。兒童文學學刊,8期,頁411-432。
5. 吳翠珍 (1998 ):兒童收看電視卡通行為研究─兼論媒體素養。理論與政策,3期,頁48-75。
6. 吳翠珍 (1996 ):學齡前兒童對兒童電視節目的注意力研究。教學科技與媒體,頁11-23。
7. 吳翠珍(1991):影響兒童電視觀看時間因素之分析。新聞學研究,44期,頁48-75。
8. 吳敏而(1987):由於娛樂中學習:從美國的兒童節目「芝麻街」談起,國文天地,11期,頁18-20。
9. 吳秀碧(1999):角色扮演與團體輔導。學生輔導,64期,頁26-35。
10. 白婉芝(2001):藝術與人文領域:戲劇教學的實踐舉例。翰林文教雜誌,23期,頁52-57。
11. 田耐青(2001):〈水果冰淇淋〉兒童電視節目之形成性評鑑研究。國立臺北師範學院學報,14期,頁1-34。
12. 田耐青(1995):兒童教育節目的製作--注意篇。社教雙月刊,67期,頁16-20。
13. 盧俊宏(民91)。規律運動、心理健康和生活品質。國民體育季刊,31(1),60-73。
14. 劉立宇(民84)。運動對改善慢性疾病的效果。國民體育季刊,24 ,99-103 。
15. 黃雅文、姜逸群、藍中孚、方進隆、劉貴雲(民80)。中老年人健康行為之探討。公共衛生,18(2),133-147 。