跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宗勳
研究生(外文):Tsung Hsun Yang
論文名稱:考慮驅動器效力部分損失之多機器人系統分散式適應性動態曲面編隊控制器設計
論文名稱(外文):Distributed Adaptive Dynamic Surface Formation Controller Design for Multi-Robots System under Partial Loss of Actuator Effectiveness
指導教授:張永華張永華引用關係
指導教授(外文):Y. H. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:105
中文關鍵詞:多機器人系統編隊控制動態曲面控制適應性控制容錯控制
外文關鍵詞:multi-robot systemformation controldynamic surface controladaptive controlfault tolerant control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
指導教授推薦書 ..................................................................................
口試委員會審定書 ..............................................................................
誌謝 ................................................................................................... iii
摘要 ................................................................................................... iv
Abstract ............................................................................................... v
目錄 ................................................................................................... vi
圖目錄 ............................................................................................. viii
表目錄 ............................................................................................... xi
1. 緒論 ........................................................................................... 1
1.1 動機與目的 ..................................................................... 1
1.2 文獻回顧 ......................................................................... 4
1.3 內容大綱 ......................................................................... 6
2. 一致性與演算法 ....................................................................... 8
2.1 基本圖形理論 ................................................................. 8
2.2 一致性演算法 ............................................................... 11
2.3 差動輪機器人模型 ....................................................... 15
vii
2.3.1 運動學分析 ............................................................ 15
2.3.2 動力學分析 ............................................................ 19
3. 編隊控制器設計 ..................................................................... 23
3.1 分散式動態曲面編隊控制器設計 ............................... 23
3.2 系統穩定性分析 ........................................................... 32
4. 容錯控制設計 ......................................................................... 39
4.1 驅動器錯誤 ................................................................... 39
4.2 分散式適應性容錯控制器設計 ................................... 40
4.3 系統穩定性分析 ........................................................... 43
5. 模擬結果與討論 ..................................................................... 50
5.1 編隊控制模擬驗證 ....................................................... 50
5.2 容錯控制模擬驗證 ....................................................... 62
6. 結論與建議 ............................................................................. 81
6.1 結論 ............................................................................... 81
6.2 建議 ............................................................................... 81
參考文獻 .......................................................................................... 83

圖 2.1 有向圖 ............................................................................................ 9
圖 2.2 無向圖 ............................................................................................ 9
圖 2.3 有向生成樹 .................................................................................. 10
圖 2.4 差動輪移動式機器人模型 .......................................................... 16
圖 5.1 機器人間通訊拓樸 ...................................................................... 51
圖 5.2 FOCA 編隊控制響應(模擬場景一): 編隊軌跡 ...................... 56
圖 5.3 FOCA 編隊控制響應(模擬場景一):編隊誤差 ........................ 56
圖 5.4 DDSFC 編隊控制響應(模擬場景一):編隊軌跡 ..................... 57
圖 5.5 DDSFC 編隊控制響應(模擬場景一):編隊誤差 ..................... 57
圖 5.6 FOCA 編隊控制響應(模擬場景二):編隊軌跡 ........................ 58
圖 5.7 FOCA 編隊控制響應(模擬場景二):編隊誤差 ........................ 58
圖 5.8 DDSFC 編隊控制響應(模擬場景二):編隊軌跡 ..................... 59
圖 5.9 DDSFC 編隊控制響應(模擬場景二):編隊誤差 ..................... 59
圖 5.10 FOCA 編隊控制響應(模擬場景三):編隊軌跡 ...................... 60
圖 5.11 FOCA 編隊控制響應(模擬場景三):編隊誤差 ...................... 60
圖 5.12 DDSFC 編隊控制響應(模擬場景三):編隊軌跡 ................... 61
圖 5.13 DDSFC 編隊控制響應(模擬場景三):編隊誤差 ................... 61
圖 5.14 FOCA 容錯控制響應(模擬場景四):編隊軌跡 ...................... 66
圖 5.15 FOCA 容錯控制響應(模擬場景四):編隊誤差 ...................... 66
圖 5.16 DDSFC 容錯控制響應(模擬場景四):編隊軌跡 ................... 67
圖 5.17 DDSFC 容錯控制響應(模擬場景四):編隊誤差 .................. 67
ix
圖 5.18 DADSFC 容錯控制響應(模擬場景四):編隊軌跡................. 68
圖 5.19 DADSFC 容錯控制響應(模擬場景四):編隊誤差................. 68
圖 5.20 DDSFC 容錯控制響應(模擬場景四):輸入力矩 ................... 69
圖 5.21 DADSFC 容錯控制響應(模擬場景四):輸入力矩................. 69
圖 5.22 DADSFC 容錯控制響應(模擬場景四):輸入補償力矩 ........ 70
圖 5.23 DADSFC 容錯控制響應(模擬場景四):效力因子估測值 .... 70
圖 5.24 FOCA 容錯控制響應(模擬場景五):編隊軌跡 ...................... 71
圖 5.25 FOCA 容錯控制響應(模擬場景五):編隊誤差 ...................... 71
圖 5.26 DDSFC 容錯控制響應(模擬場景五):編隊軌跡 ................... 72
圖 5.27 DDSFC 容錯控制響應(模擬場景五):編隊誤差 ................... 72
圖 5.28 DADSFC 容錯控制響應(模擬場景五):編隊軌跡................. 73
圖 5.29 DADSFC 容錯控制響應(模擬場景五):編隊誤差................. 73
圖 5.30 DDSFC 容錯控制響應(模擬場景五):輸入力矩 ................... 74
圖 5.31 DADSFC 容錯控制響應(模擬場景五):輸入力矩................. 74
圖 5.32 DADSFC 容錯控制響應(模擬場景五):輸入補償力矩 ........ 75
圖 5.33 DADSFC 容錯控制響應(模擬場景五):效力因子估測值 .... 75
圖 5.34 FOCA 容錯控制響應(模擬場景六):編隊控制 ...................... 76
圖 5.35 FOCA 容錯控制響應(模擬場景六):編隊誤差 ...................... 76
圖 5.36 DDSFC 容錯控制響應(模擬場景六):編隊軌跡 ................... 77
圖 5.37 DDSFC 容錯控制響應(模擬場景六):編隊誤差 ................... 77
圖 5.38 DADSFC 容錯控制響應(模擬場景六):編隊軌跡................. 78
圖 5.39 DADSFC 容錯控制響應(模擬場景六):編隊誤差................. 78
圖 5.40 DDSFC 容錯控制響應(模擬場景六);輸入力矩 ................... 79
x
圖 5.41 DADSFC 容錯控制響應(模擬場景六):輸入力矩................. 79
圖 5.42 DADSFC 容錯控制響應(模擬場景六):輸入補償力矩 ........ 80
圖 5.43 DADSFC 容錯控制響應(模擬場景六):效力因子估測值 .... 80

表 5.1 機器人系統參數 .......................................................................... 51
表 5.2 模擬場景一之性能指標 .............................................................. 55
表 5.3 模擬場景二之性能指標 .............................................................. 55
表 5.4 模擬場景三之性能指標 .............................................................. 55
表 5.5 模擬場景四之性能指標 .............................................................. 65
表 5.6 模擬場景五之性能指標 .............................................................. 65
表 5.7 模擬場景六之性能指標 .............................................................. 65
[1]. I. Bayezit and B. Fidan, "Distributed cohesive motion control of flight vehicle formations," IEEE Transactions on Industrial Electronics, vol. 60, pp. 5763-5772, 2013.
[2]. H. Cao, W. Qin, J. Zhang, Q. Li, and Y. Liu, "Design and Implementation of Cooperative Platform for Multiple Devices Based on Multi-Agent System in Ubiquitous Networking Environment," in Advances in Wireless Sensor Networks. vol. 334, R. Wang and F. Xiao, Eds., ed: Springer Berlin Heidelberg, pp. 1-13, 2013.
[3]. S. Zhu, D. Wang, and C. Low, "Cooperative Control of Multiple UAVs for Source Seeking," Journal of Intelligent &; Robotic Systems, vol. 70, pp. 293-301, 2013.
[4]. H. Rezaee and F. Abdollahi, "A Decentralized Cooperative Control Scheme With Obstacle Avoidance for a Team of Mobile Robots," IEEE Transactions on Industrial Electronics, vol. 61, pp. 347-354, 2014.
[5]. L. Bing, L. Jie, H. Guanglin, and L. Dalin, "Research on Cooperative Combat for Integrated Reconnaissance-Attack-BDA of Group LAVs," Mathematical Problems in Engineering, vol. 2014, p. 6, 2014.
[6]. L. Shuai, K. Ruofan, and G. Yi, "Cooperative Distributed Source Seeking by Multiple Robots: Algorithms and Experiments,"
84
IEEE/ASME Transactions on Mechatronics vol. 19, pp. 1810-1820, 2014.
[7]. Z. Peng, S. Yang, G. Wen, and A. Rahmani, "Distributed Consensus-Based Robust Adaptive Formation Control for Nonholonomic Mobile Robots with Partial Known Dynamics," Mathematical Problems in Engineering, vol. 2014, p. 12, 2014.
[8]. W. Wang, J. Huang, C. Wen, and H. Fan, "Distributed Adaptive Control for Consensus Tracking with Application to Formation Control of Nonholonomic Mobile Robots," Automatica, vol. 50, pp. 1254-1263, 2014.
[9]. F. Mastrogiovanni and A. Sgorbissa, "A Behaviour Sequencing and Composition Architecture Based on Ontologies for Entertainment Humanoid Robots," Robotics and Autonomous Systems, vol. 61, pp. 170-183, 2013.
[10]. D. Herrero, J. Villagra, and H. Martinez, "Self-Configuration of Waypoints for Docking Maneuvers of Flexible Automated Guided Vehicles," IEEE Transactions on Automation Science and Engineering, vol. 10, pp. 470-475, 2013.
[11]. T. Nozaki, T. Mizoguchi, and K. Ohnishi, "Decoupling Strategy for Position and Force Control Based on Modal Space Disturbance Observer," IEEE Transactions on Industrial Electronics, vol. 61, pp. 1022-1032, 2014.
[12]. L. Jinoh, C. Pyung Hun, and R. S. Jamisola, "Relative Impedance
85
Control for Dual-Arm Robots Performing Asymmetric Bimanual Tasks," IEEE Transactions on Industrial Electronics vol. 61, pp. 3786-3796, 2014.
[13]. S. Manzoor, R. Ul Islam, A. Khalid, A. Samad, and J. Iqbal, "An Open-Source Multi-DOF Articulated Robotic Educational Platform for Autonomous Object Manipulation," Robotics and Computer-Integrated Manufacturing, vol. 30, pp. 351-362, 2014.
[14]. X. Jian-Xin, G. Zhao-Qin, and L. Tong Heng, "Design and Implementation of a Takagi-Sugeno-Type Fuzzy Logic Controller on a Two-Wheeled Mobile Robot," Industrial Electronics, IEEE Transactions on, vol. 60, pp. 5717-5728, 2013.
[15]. X. Jian-Xin, G. Zhao-Qin, and L. Tong Heng, "Design and Implementation of Integral Sliding-Mode Control on an Underactuated Two-Wheeled Mobile Robot," IEEE Transactions on Industrial Electronics, vol. 61, pp. 3671-3681, 2014.
[16]. I. Ullah, F. Ullah, Q. Ullah, and S. Shin, "Integrated tracking and accident avoidance system for mobile robots," International Journal of Control, Automation and Systems, vol. 11, pp. 1253-1265, 2013.
[17]. L. Shuang and S. Dong, "Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning," IEEE/ASME Transactions on Mechatronics vol. 19, pp. 401-411, 2014
[18]. M. Benosman, "A Survey of Some Recent Results on Nonlinear Fault Tolerant Control," Mathematical Problems in Engineering, vol. 2010,
86
p. 25, 2010.
[19]. E. Kamal, A. Aitouche, R. Ghorbani, and M. Bayart, "Robust Fuzzy Fault-Tolerant Control of Wind Energy Conversion Systems Subject to Sensor Faults," IEEE Transactions on Sustainable Energy, vol. 3, pp. 231-241, 2012.
[20]. H. Torkaman and E. Afjei, "Sensorless Method for Eccentricity Fault Monitoring and Diagnosis in Switched Reluctance Machines Based on Stator Voltage Signature," IEEE Transactions on Magnetics, vol. 49, pp. 912-920, 2013.
[21]. A. Lemos, W. Caminhas, and F. Gomide, "Adaptive Fault Detection and Diagnosis Using An Evolving Fuzzy Classifier," Information Sciences, vol. 220, pp. 64-85, 2013.
[22]. W. Rongrong and W. Junmin, "Passive Actuator Fault-Tolerant Control for a Class of Overactuated Nonlinear Systems and Applications to Electric Vehicles," Vehicular Technology, IEEE Transactions on, vol. 62, pp. 972-985, 2013.
[23]. Z. Gao, B. Jiang, P. Shi, J. Liu, and Y. Xu, "Passive Fault-Tolerant Control Design for Near-Space Hypersonic Vehicle Dynamical System," Circuits, Systems, and Signal Processing, vol. 31, pp. 565-581, 2012.
[24]. M. Benosman and K. Y. Lum, "Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems," Control Systems Technology, IEEE Transactions on, vol. 18, pp. 152-163, 2010.
87
[25]. J. Li and J. Li, "Adaptive Fuzzy Iterative Learning Control with Initial-State Learning for Coordination Control of Leader-Following Multi-Agent Systems," Fuzzy Sets and Systems, vol. 248, pp. 122-137, 2014.
[26]. C. Zhang, T. Sun, and Y. Pan, "Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots," Mathematical Problems in Engineering, vol. 2014, p. 9, 2014.
[27]. D. Panagou and V. Kumar, "Cooperative Visibility Maintenance for Leader-Follower Formations in Obstacle Environments," IEEE Transactions on Robotics vol. 30, pp. 831-844, 2014.
[28]. Y. Zhao, Z. Duan, G. Wen, and Y. Zhang, "Distributed Finite-Time Tracking Control for Multi-Agent Systems: An Observer-Based Approach," Systems &; Control Letters, vol. 62, pp. 22-28, 2013.
[29]. Z. Peng, G. Wen, A. Rahmani, and Y. Yu, "Leader-Follower Formation Control of Nonholonomic Mobile Robots Based on A Bioinspired Neurodynamic Based Approach," Robotics and Autonomous Systems, vol. 61, pp. 988-996, 2013.
[30]. Z. Peng, D. Wang, T. Li, and Z. Wu, "Leaderless and Leader-Follower Cooperative Control of Multiple Marine Surface Vehicles with Unknown Dynamics," Nonlinear Dynamics, vol. 74, pp. 95-106, 2013.
[31]. Y. H. Chang, C. Y. Yang, W. S. Chan, H. W. Lin, and C. W. Chang, "Adaptive Fuzzy Sliding-Mode Formation Controller Design for
88
Multi-Robot Dynamic Systems," International Journal of Fuzzy Systems, vol. 16, pp. 121-131, 2014.
[32]. T. Dierks, B. Brenner, and S. Jagannathan, "Neural Network-Based Optimal Control of Mobile Robot Formations with Reduced Information Exchange," IEEE Transactions on Control Systems Technology vol. 21, pp. 1407-1415, 2013.
[33]. S. Nag and L. Summerer, "Behaviour Based, Autonomous and Distributed Scatter Manoeuvres for Satellite Swarms," Acta Astronautica, vol. 82, pp. 95-109, 2013.
[34]. D. Xu, X. Zhang, Z. Zhu, C. Chen, and P. Yang, "Behavior-Based Formation Control of Swarm Robots," Mathematical Problems in Engineering, vol. 2014, p. 13, 2014.
[35]. Z. Qin, L. Lapierre, and X. Xianbo, "Distributed Control of Coordinated Path Tracking for Networked Nonholonomic Mobile Vehicles," IEEE Transactions on Industrial Informatics, vol. 9, pp. 472-484, 2013.
[36]. J. Ghommam, H. Mehrjerdi, M. Saad, and F. Mnif, "Formation Path Following Control of Unicycle-Type Mobile Robots," Robotics and Autonomous Systems, vol. 58, pp. 727-736, 2010.
[37]. L.-W. Zhao and C.-C. Hua, "Finite-Time Consensus Tracking of Second-Order Multi-Agent Systems via Nonsingular TSM," Nonlinear Dynamics, vol. 75, pp. 311-318, 2014.
[38]. A. Fujimori, H. Kubota, N. Shibata, and Y. Tezuka,
89
"Leader-Follower Formation Control with Obstacle Avoidance Using Sonar-Equipped Mobile Robots," Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 228, pp. 303-315, 2014.
[39]. S. Yang and J. Yu, "Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field," Mathematical Problems in Engineering, vol. 2014, p. 13, 2014.
[40]. Y. Cao, W. Ren, and Z. Meng, "Decentralized Finite-Time Sliding Mode Estimators and Their Applications in Decentralized Finite-Time Formation Tracking," Systems &; Control Letters, vol. 59, pp. 522-529, 2010.
[41]. X. Wu, L. Xiang, and J. Zhou, "Distributed Adaptive Tracking Backstepping Control in Networked Nonidentical Lagrange Systems," Nonlinear Dynamics, pp. 1-12, 2014.
[42]. X. Chen, P. Yan, and A. Serrani, "On Input-To-State Stability-Based Design for Leader-Follower Formation Control with Measurement Delays," International Journal of Robust and Nonlinear Control, vol. 23, pp. 1433-1455, 2013.
[43]. J. Ghommam, H. Mehrjerdi, and M. Saad, "Robust Formation Control without Velocity Measurement of The Leader Robot," Control Engineering Practice, vol. 21, pp. 1143-1156, 2013.
[44]. D. Zhao, T. Zou, S. Li, and Q. Zhu, "Adaptive Backstepping Sliding Mode Control for Leader-Follower Multi-Agent Systems," Control
90
Theory &; Applications, IET, vol. 6, pp. 1109-1117, 2012.
[45]. H. Du and S. Li, "Attitude Synchronization Control for A Group of Flexible Spacecraft," Automatica, vol. 50, pp. 646-651, 2014.
[46]. D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, "Dynamic Surface Control for A Class of Nonlinear Systems," IEEE Transactions on Automatic Control, vol. 45, pp. 1893-1899, 2000.
[47]. Q. Hu and B. Xiao, "Fault-Tolerant Sliding Mode Attitude Control for Flexible Spacecraft under Loss of Actuator Effectiveness," Nonlinear Dynamics, vol. 64, pp. 13-23, 2011.
[48]. L. Junquan and K. D. Kumar, "Decentralized Fault-Tolerant Control for Satellite Attitude Synchronization," IEEE Transactions on Fuzzy Systems vol. 20, pp. 572-586, 2012.
[49]. J. Bin, G. Zhifeng, S. Peng, and X. Yufei, "Adaptive Fault-Tolerant Tracking Control of Near-Space Vehicle Using Takagi-Sugeno Fuzzy Models," IEEE Transactions on Fuzzy Systems, vol. 18, pp. 1000-1007, 2010.
[50]. Y. Xu, B. Jiang, G. Tao, and Z. Gao, "Fault Tolerant Control for a Class of Nonlinear Systems with Application to Near Space Vehicle," Circuits, Systems, and Signal Processing, vol. 30, pp. 655-672, 2011.
[51]. Y. Xu, Y. Li, and S. Tong, "Fuzzy Adaptive Actuator Failure Compensation Dynamic Surface Control of Multi-Input and Multi-Output Nonlinear Systems," International Journal of Innovative Computing, Information and Control, vol. 9, pp.
91
4875-4888, 2013.
[52]. Q. Wu and M. Saif, "Model-Based Robust Fault Diagnosis for Satellite Control Systems Using Learning and Sliding Mode Approaches," Journal of Computers, vol. 4, pp. 1022-1032, 2009.
[53]. H. A. Talebi, K. Khorasani, and S. Tafazoli, "A Recurrent Neural-Network-Based Sensor and Actuator Fault Detection and Isolation for Nonlinear Systems with Application to the Satellite's Attitude Control Subsystem," IEEE Transactions on Neural Networks, vol. 20, pp. 45-60, 2009.
[54]. W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications: Springer Publishing Company, Incorporated, 2007.
[55]. R. Wei and R. W. Beard, "Consensus Seeking in Multiagent Systems under Dynamically Changing Interaction Topologies," IEEE Transactions on Automatic Control, vol. 50, pp. 655-661, 2005.
[56]. R. Olfati-Saber and R. M. Murray, "Consensus Problems in Networks of Agents with Switching Topology and Time-Delays," IEEE Transactions on Automatic Control, vol. 49, pp. 1520-1533, 2004.
[57]. R. Fierro and F. L. Lewis, "Control of A Nonholonomic Mobile Robot Using Neural Networks," IEEE Transactions on Neural Networks, vol. 9, pp. 589-600, 1998.
[58]. T. Das and I. N. Kar, "Design and Implementation of An Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots," IEEE
92
Transactions on Control Systems Technology, vol. 14, pp. 501-510, 2006.
[59]. P. Bong Seok, Y. Sung Jin, P. Jin-Bae, and C. Yoon-Ho, "Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty," IEEE Transactions on Control Systems Technology, vol. 17, pp. 207-214, 2009.
[60]. Y. Sung Jin and P. Bong Seok, "Formation tracking control for a class of multiple mobile robots in the presence of unknown skidding and slipping," Control Theory &; Applications, IET, vol. 7, pp. 635-645, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊