跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政翰
研究生(外文):Cheng-Han Lin
論文名稱:二氧化矽空心球包覆金奈米粒子的材料合成與催化應用
論文名稱(外文):A Nanoreactor of Gold Nanoparticle Encapsulated Hollow Silica Nanosphere: Synthesis and Catalytic Applications
指導教授:牟中原
指導教授(外文):Chung-Yuan Mou
口試委員:鄭淑芬林弘萍
口試日期:2011-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:125
中文關鍵詞:二氧化矽空心結構金奈米粒子一氧化碳氧化反微乳液系統催化
外文關鍵詞:silicahollow structuregold nanoparticleCO oxidationreverse microemulsion systemcatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:775
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米尺度的空心材料,在近幾年受到廣泛的研究與開發,主要原因在於此材料在形態上的特殊構造,可做為物質分離、藥物輸送以及附載金屬粒子作催化反應等相關應用。在傳統的合成方式中,主要以聚苯乙烯或是二氧化矽球等材料當作內層模板,之後藉由鍛燒、鹼/酸液浸泡的方式移除內層模板,但其製備過程繁雜、瑣碎,而且所製備出的二氧化矽空心球,其尺度無法小於100奈米,因而限制了材料的應用性。
在本篇論文中,利用反微乳液(reverse microemulsion)當作合成模板,一步合成出二氧化矽空心球,並加以調控及應用。藉由加入有機矽烷(3-aminopropyltrimethoxysilane, APTS),導致矽氧鍵結的程度不足,使縮和不完全的二氧化矽在去離子水洗滌的過程當中,藉著球殼上的微孔洞流出,形成二氧化矽空心球。在本實驗中,藉此方式合成二氧化矽空心球,調整不同的溶劑、助界面活性劑(co-surfactant),及界面活性劑的比例,去控制二氧化矽空心球的大小,可從25奈米調整到170奈米。所以我們可以視其附載物的大小,依所需二氧化矽空心球的大小來進行合成。此奈米尺度的二氧化矽空心球,在生醫方面研究與應用上均具有相當的潛力,是一個值得我們去深入探討的議題。
另一方面,將二氧化矽空心球附載金奈米粒子,探討其材料在催化方面的應用。在對位硝基酚(p-nitrophenol)的還原實驗中,二氧化矽空心球提供了一個抑制二硫基琥珀酸(meso-2,3-dimercaptosuccinic acid, DMSA)毒化金奈米粒子的功能;同時在一氧化碳的氧化反應中,二氧化矽空心球可以阻止金奈米粒子在高溫反應過程中聚集的發生;不僅如此二氧化矽空心球亦可當作一個微反應器,藉由水氣的調控作為啟動反應是否進行的開關。由上述說明可以知道二氧化矽空心球不論在催化上或是在生醫方面的應用均具有相當高的潛力。


In recent years, hollow nanostructures have been reported of their unique properties such as high surface-to-volume ratio and the large fraction of void space in hollow structure. Those materials could be used in various applications including catalysis, drug delivery, hydrogen storage, and rechargeable batteries. In general, the as-synthesized materials are prepared through coating the target materials on the templates. Then, hollow structures are obtained by removal of the templates. However, the synthetic procedures were complicated and involved numerous steps. It was difficult to reduce the particle size to 100 nm. Thus, those methods restricted the development of hollow nanostructure in the biomedical applications.
Herein, we synthesized hollow silica nanospheres (HSNs) with tunable sizes from 25 nm to 170 nm by a one-step water in oil reverse microemulsion (W/O) method. The size of HSNs could be adjusted via three approaches: (1) changing the oil phase in the reverse microemulsion, (2) adjusting the volume of co-surfactant, and (3) varying the ratio of surfactant CA-520 to Triton X-100. The compositions and structures were characterized by different characterization techniques, such as transmission electron microscope (TEM), and nitrogen adsorption-desorption isotherms. Furthermore, the functional materials such as metal, metal oxide, drug, and protein could be encapsulated in the hollow silica nanospheres through this novel method. Hollow silica nanospheres have potential applications in catalysis, cell-labeling and drug delivery. Herein, we demonstrate its application in catalysis.
The gold nanoparticle encapsulated in hollow silica nanospheres (Au@HSNs) were examined on p-nitrophenol reduction and CO oxidation reaction. The silica shell of hollow silica sphere protected the gold nanoparticle from sintering during calcination and reaction. In p-nitrophenol reduction, the Au@HSNs displayed high catalytic activity and resistance to DMSA (meso-2,3-dimercaptosuccinic acid) poisoning. In CO oxidation reaction, the catalyst performed amazingly at low-temperature CO oxidation even at -20℃, and displayed high stability after many catalytic cycles. Furthermore, the water vapor could not only enhance the catalytic activity but also be a switch to turn on/off the nanoreactor.

Contents
List of Figure captions…………………………………………………VII
List of Scheme Captions……………………………………………………XV
List of Tables ……………………………………………………………………XVII
Chapter 1 Introduction
1.1 Nanomaterials………………………………………………………001
1.2 Hollow structures……………………………………………002
1.3 Application of Hollow structures……………………………………………012
1.3.1 Antireflective surface coating…………………………………………012
1.3.2 Drug delivery and cell label…………………………………………014
1.3.3 Encapsulation of proteins……………………………………………016
1.3.4 Size-selective catalysis………………………………………………017
1.4 Gold Nanoparticles…………………………………………………………019
Chapter 2 Experiment Section
2.1 Materials……………………………………………………………………024
2.2 Instruments…………………………………………………………………024
2.2.1 Transmission Electron Microscopy (TEM)……………………………024
2.2.2 Nitrogen/Water Adsorption-desorption Isotherms……………………025
2.2.3 Dynamic Light Scattering (DLS) & Zeta Potential……………………025
2.2.4 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)……………026
2.2.5 Thermogravimetric (TG) analysis………………………………………026
2.3 Synthesis Procedure………………………………………………………027
2.3.1 Synthesis of hollow silica nanospheres (HSNs)………………………027
2.4 Synthesis of silica hollow spheres with different sizes…………………028
2.4.1 Synthesis of HSNs by changing the solvent of the reverse microemusion system………………………………………………………………………028
2.4.2 Synthesis of HSNs by varying the volume of n-hexanol………………031
2.4.3 Synthesis of HSNs by changing the ratio of CA-520 and Triton X-100………………031
2.5 Synthesis of metal encapsulated hollow silica nanospheres (M@HSNs)………………033
2.6 Catalytic Reaction of Au@HSNs………………034
2.6.1. P-nitrophenol Reduction……………………………………………034
2.6.2. CO oxidation (catalytic activity)……………………………………035
2.6.2. CO oxidation (Kinetic study)…………………………………………036
Chapter 3 Results and Discussion (Synthesis)
3.1 Synthesis of hollow silica nanospheres based on reverse microemulsion…………………037
3.1.1 Synthesis and characterization………………………………037
3.1.2 Plausible Mechanism………………………………………………041
3.2 Tuning the diameters of hollow silica nanospheres (HSNs)………………044
3.2.1 Changing the oil phase of reverse microemulsion system…………....044
3.2.2 Varying the volume of n-hexanol in the system……………………….057
3.2.3 Varying the ratio of CA-520 to Triton X-100 of the system…………………………065
3.3 Plausible model for the effects on HSNs size……………………………069
3.3.1 Solvent effect on HSNs size…………………………………………069
3.3.2 Co-surfactant effect on HSNs size…………………………073
3.3.3 Mixed surfactants effect on HSNs size…………………………073
Chapter 4 Results and Discussion (catalytic applications)
4.1 A poison-resistant nanocatalyst for nitrophenol reduction…………………077
4.2 A switchable nanoreactor for CO Oxidation………………………………085
4.2.1 Characterization of the nanoreactor………………………………087
4.2.2 CO Oxidation…………………………………………………………088
4.2.3 CO Oxidation by catalysts being treated with different conditions……093
4.2.4 Kinetic study of CO oxidation…………………………………………101
4.2.5 Moisture effect of catalysts……………………………………………108
Chapter 5 Conclusions…………………………………………………………………………117
References……………………………………………………………………122


1.Stamplecoskie, K. G. and J. C. Scaiano (2010). J Am Chem Soc 132(6): 1825-+.
2.Chen, Y., H. R. Chen, L. M. Guo, Q. J. He, F. Chen, J. Zhou, J. W. Feng and J. L. Shi (2010). Acs Nano 4(1): 529-539.
3.Yeo, K. M., J. Shin and I. S. Lee (2010). Chem Commun 46(1): 64-66.
4.Fan, Z. J., J. Yan, L. J. Zhi, Q. Zhang, T. Wei, J. Feng, M. L. Zhang, W. Z. Qian and F. Wei (2010). Adv Mater 22(33): 3723-+.
5.Dresselhaus, M. S. (2010). Acs Nano 4(8): 4344-4349.
6.Lou, X. W., L. A. Archer and Z. C. Yang (2008). Adv Mater 20(21): 3987-4019.
7.Zhang, Q., W. S. Wang, J. Goebl and Y. D. Yin (2009). Nano Today 4(6): 494-507.
8.Caruso, F., R. A. Caruso and H. Mohwald (1998). Science 282(5391): 1111-1114.
9.Imhof, A. (2001). Langmuir 17(12): 3579-3585.
10.Shin, J. M., H. Kim and I. S. Lee (2008). Chem Commun(43): 5553-5555.
11.Zhang, T. R., J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni and Y. D. Yin (2008). Angew Chem Int Edit 47(31): 5806-5811.
12.Zhang, T. R., Q. Zhang, J. P. Ge, J. Goebl, M. W. Sun, Y. S. Yan, Y. S. Liu, C. L. Chang, J. H. Guo and Y. D. Yin (2009). J Phys Chem C 113(8): 3168-3175.
13.Cho, H., A. R. Felmy, R. Craciun, J. P. Keenum, N. Shah and D. A. Dixon (2006). J Am Chem Soc 128(7): 2324-2335.
14.Sjoberg, S. (1996). J Non-Cryst Solids 196: 51-57.
15.Brykov, A. S. (2004). Colloid J+ 66(4): 430-434.
16.Lee, J., J. C. Park and H. Song (2008). Adv Mater 20(8): 1523-+.
17.Stober, W., A. Fink and E. Bohn (1968). J Colloid Interf Sci 26(1): 62-69.
18.Giersig, M., T. Ung, L. M. Liz-Marzan and P. Mulvaney (1997). Adv Mater 9(7): 570-+.
19.Zhu, Y. F., E. Kockrick, T. Ikoma, N. Hanagata and S. Kaskel (2009). Chem Mater 21(12): 2547-2553.
20.Du, L., H. Y. Song and S. J. Liao (2009). Appl Surf Sci 255(23): 9365-9370.
21.Zhang, Q., T. R. Zhang, J. P. Ge and Y. D. Yin (2008). Nano Lett 8(9): 2867-2871.
22.Nelson, A., K. S. Jack, T. Cosgrove and D. Kozak (2002). Langmuir 18(7): 2750-2755.
23.Gun''ko, V. M., V. I. Zarko, E. F. Voronin, E. V. Goncharuk, L. S. Andriyko, N. V. Guzenko, L. V. Nosach and W. Janusz (2006). J Colloid Interf Sci 300(1): 20-32.
24.Huang, C. C., W. Huang and C. S. Yeh (2011). Biomaterials 32(2): 556-564.
25.Wu, S. H., C. T. Tseng, Y. S. Lin, C. H. Lin, Y. Hung and C. Y. Mou (2011). J Mater Chem 21(3): 789-794.
26.Lin, Y. S., S. H. Wu, C. T. Tseng, Y. Hung, C. Chang and C. Y. Mou (2009). Chem Commun(24): 3542-3544.
27.Teng, Z. G., Y. D. Han, J. Li, F. Yan and W. S. Yang (2010). Micropor Mesopor Mat 127(1-2): 67-72.
28.Chen, Y., H. R. Chen, M. Ma, F. Chen, L. M. Guo, L. X. Zhang and J. L. Shi (2011). J Mater Chem 21(14): 5290-5298.
29.Kim, J. H., S. B. Yoon, J. Y. Kim, Y. B. Chae and J. S. Yu (2008). Colloid Surface A 313: 77-81
704.
30.Yoon, S. B., J. Y. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. K. Park and J. S. Yu (2007). J Mater Chem 17(18): 1758-1761.
31.Sun, Z. C., F. Bai, H. M. Wu, S. K. Schmitt, D. M. Boye and H. Y. Fan (2009). J Am Chem Soc 131(38): 13594-+.
32.Rodriguez, A. T., X. F. Li, J. Wang, W. A. Steen and H. Y. Fan (2007). Adv Funct Mater 17(15): 2710-2716.
33.Rodriguez, A. T., M. Chen, Z. Chen, C. J. Brinker and H. Y. Fan (2006). J Am Chem Soc 128(29): 9276-9277.
34.Zhu, Y. F., T. Ikoma, N. Hanagata and S. Kaskel (2010). Small 6(3): 471-478.
35.Ellerby, L. M., C. R. Nishida, F. Nishida, S. A. Yamanaka, B. Dunn, J. S. Valentine and J. I. Zink (1992). Science 255(5048): 1113-1115.
36.Reetz, M. T. (1997). Adv Mater 9(12): 943-&.
37.He, X. X., J. Y. Chen, K. M. Wang, D. L. Qin and W. H. Tan (2007). Talanta 72(4): 1519-1526.
38.Cao, A. N., Z. M. Ye, Z. W. Cai, E. Y. Dong, X. W. Yang, G. B. Liu, X. Y. Deng, Y. L. Wang, S. T. Yang, H. F. Wang, M. H. Wu and Y. F. Liu (2010). Angew Chem Int Edit 49(17): 3022-3025.
39.Anisur, R. M., J. Shin, H. H. Choi, K. M. Yeo, E. J. Kang and I. S. Lee (2010). J Mater Chem 20(47): 10615-10621.
40.Neaman, A., B. Waller, F. Mouele, F. Trolard and G. Bourrie (2004). Eur J Soil Sci 55(1): 47-54.
41.Daniel, M. C. and D. Astruc (2004). Chem Rev 104(1): 293-346.
42.Logunov, S. L., T. S. Ahmadi, M. A. ElSayed, J. T. Khoury and R. L. Whetten (1997). J Phys Chem B 101(19): 3713-3719.
43.Melinger, J. S., V. A. Kleiman, D. McMorrow, F. Grohn, B. J. Bauer and E. Amis (2003). J Phys Chem A 107(18): 3424-3431.
44.Swami, A., A. Kumar and M. Sastry (2003). Langmuir 19(4): 1168-1172.
45.Parravan.G (1970). J Catal 18(3): 320-&.
46.Deng, W. L., J. De Jesus, H. Saltsburg and M. Flytzani-Stephanopoulos (2005). Appl Catal a-Gen 291(1-2): 126-135.
47.Fu, Q., W. L. Deng, H. Saltsburg and M. Flytzani-Stephanopoulos (2005). Appl Catal B-Environ 56(1-2): 57-68.
48.Hutchings, G. J. (1985). J Catal 96(1): 292-295.
49.Biella, S., L. Prati and M. Rossi (2002). J Catal 206(2): 242-247.
50.Haruta, M., T. Kobayashi, H. Sano and N. Yamada (1987). Chem Lett(2): 405-408.
51.Haruta, M. (1997). Catal Today 36(1): 153-166.
52.Haruta, M., N. Yamada, T. Kobayashi and S. Iijima (1989). J Catal 115(2): 301-309.
53.Bond, G. C. and D. T. Thompson (2000). Gold Bull 33(2): 41-51.
54.Visco, A. M., F. Neri, G. Neri, A. Donato, C. Milone and S. Galvagno (1999). Phys Chem Chem Phys 1(11): 2869-2873.
55.Park, E. D. and J. S. Lee (1999). J Catal 186(1): 1-11.
56.Osseo-Asare, K. and F. J. Arriagada (1999). J Colloid Interf Sci 218(1): 68-76.
57.Arriagada, F. J. and K. Osseo-Asare (1999). J Colloid Interf Sci 211(2): 210-220.
58.Vanblaaderen, A. and A. Vrij (1993). J Colloid Interf Sci 156(1): 1-18.
59.Zhao, J. X. J., Y. H. Jin, S. Lohstreter, D. T. Pierce, J. Parisien, M. Wu and C. Hall (2008). Chem Mater 20(13): 4411-4419.
60.Hou, M. J. and D. O. Shah (1987). Langmuir 3(6): 1086-1096.
61.Yin, Y. D., J. P. Ge, Q. Zhang and T. R. Zhang (2008). Angew Chem Int Edit 47(46): 8924-8928.
62.Lu, Y., Y. Mei, M. Drechsler and M. Ballauff (2006). Angew Chem Int Edit 45(5): 813-816.
63.Kung, M. C., J. Jiang, H. H. Kung and J. T. Ma (2009). Gold Bull 42(4): 280-287.
64.Hughes, M. D., Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin and C. J. Kiely (2005). Nature 437(7062): 1132-1135.
65.Mou, C. Y., J. P. Deng and W. C. Shih (2007). J Phys Chem C 111(27): 9723-9728.
66.Date, M., M. Okumura, S. Tsubota and M. Haruta (2004). Angew Chem Int Edit 43(16): 2129-2132.
67. Jiang, L. Y., X. Yin, J. W. Zhao, H. M. Liu, Y. H. Liu, F. Y. Wang, J. J. Zhu, F. Boey and H. Zhang (2009). J Phys Chem C 113(47): 20193-20197.
68. Veith, G. M., A. R. Lupini, S. Rashkeev, S. J. Pennycook, D. R. Mullins, V. Schwartz, C. A. Bridges and N. J. Dudney (2009). J Catal 262(1): 92-101.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊