跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾仲熙
研究生(外文):Chung-Shi Tseng
論文名稱:H-infinity模糊控制追蹤控制及其在多軸機械系統之應用
論文名稱(外文):H-infinity Fuzzy Tracking Control and Its Application to Multibody Systems
指導教授:陳博現
指導教授(外文):Bor-Sen Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:111
中文關鍵詞:模糊控制多軸機械系統強健控制
外文關鍵詞:Fuzzy ControlMultibody SystemsRobust Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,非線性H-infinity控制策略已經被應用到非線性強健控制設計的問題上。但是針對非線性H-infinity控制,設計者必須去解Hamilton-Jacobi方程式(或不等式),而此方程式為一非線性偏微分方程式,只有少數特殊非線性系統有解。一般而言,傳統的非線性H-infinity控制策略不適用於實際控制系統的設計。本論文提出利用Takagi和Sugeno模糊模式來解決非線性H-infinity控制問題。本文所提出的方法可將非線性H-infinity控制問題化簡為線性矩陣不等式的問題來解決。線性矩陣不等式的問題可輕易地使用凸集合最佳化技巧解決。本文亦利用線性矩陣不等式的技巧提出一套有系統的步驟來解決模糊非線性H-infinity控制問題。除此之外,本文亦將所得的結果推展到分散式H-infinity控制來解決非線性互相連接之系統,並將此結果實際應用到一多軸機械控制系統的實現。本文的主要貢獻有(一)將非線性H-infinity控制問題以模糊控制的方式來解決,首先將一非線性系統用模糊模式來表示,接著針對此模糊模式來設計H-infinity模糊控制器。同時狀態迴授和輸出迴授此二例均有探討。本文所提出方法的優點是利用簡單的模糊控制器就能達到H-infinity的控制目標。(二)本文亦將分散式模糊控制方法推展到解決非線性互相連接系統。(三)本文將分散式模糊控制法則實際應用到一多軸機械系統並將它實現。再者,本文所提出之方法除了能達成H-infinity控制外,閉迴路的穩定性亦能保證。
Recently, the nonlinear H-infinity control schemes have been
introduced to deal with the robust performance design problem of
nonlinear systems. However, the designer has to solve a
Hamilton-Jacobi equation, which is a nonlinear partial
differential equation. Only some very special nonlinear
systems have a closed form solution. In general, conventional nonlinear
H-infinity control schemes are not suitable for practical
control system design. Based on the Takagi and Sugeno (TS) fuzzy
model, both state feedback and output feedback decentralized
fuzzy tracking control designs with a guaranteed H-infinity
tracking performance will be addressed in this dissertation for a
multi-arm system. A fuzzy observer-based control design will be
employed to deal with the output feedback control problem. By the
proposed method, the outcome of the fuzzy tracking control design
problem can be parameterized in terms of a linear matrix
inequality problem (LMIP) or an eigenvalue problem (EVP). The
LMIP or EVP can be solved very efficiently using the convex
optimization techniques. Systematical design procedure using LMI
techniques is proposed to implement the H-infinity fuzzy
tracking control problems. The results of the proposed
H-infinity decentralized fuzzy tracking controller are applied
to a multi-arm system. The main results are summarized as
follows: First, this dissertation introduces a fuzzy control
design method for nonlinear systems with a guaranteed
H-infinity model reference tracking performance. First, the
Takagi and Sugeno (TS) fuzzy model is employed to approximate a
nonlinear system. Next, based on the fuzzy model, a fuzzy
controller is developed to reduce the tracking error as small as
possible for all bounded reference inputs. If the state variables
are unavailable, a fuzzy observer-based tracking control design
is also developed. The advantage of proposed tracking control
design is that only a simple linear fuzzy controller is used in
our approach without complicated feedback linearization technique
and adaptive scheme. By the proposed method, the fuzzy tracking
control design problem is parameterized in terms of a linear
matrix inequality problem (LMIP). The LMIP can be solved very
efficiently using the convex optimization techniques. Simulation
examples are given to illustrate the design procedures and
tracking performance of the proposed method. Second, it is not
easy to design an H-infinity decentralized controller for
nonlinear interconnected systems in general. In this
dissertation, the tracking control problem of nonlinear
interconnected systems is studied via H-infinity decentralized
fuzzy control method. Similarly, the nonlinear interconnected
system is represented by an equivalent Takagi-Sugeno type fuzzy
model. A state feedback decentralized fuzzy control scheme is
developed to achieve the H-infinity tracking performance.
Furthermore, the stability of the nonlinear interconnected
systems is also guaranteed. This design problem is equivalent to
solving an eigenvalue problem (EVP). Third, due to the physical
configuration and high dimensionality of the constrained
multibody systems, a centralized fuzzy control is neither
efficient nor even necessary. Therefore, a decentralized fuzzy
control scheme is more suitable for the constrained multibody
systems. In this dissertation, an H-infinity decentralized fuzzy
tracking control scheme is proposed for a constrained multibody
system. Finally, in order to illustrate the design effectiveness
of the proposed H-infinity decentralized fuzzy tracking control
scheme, an experimental multi-arm system with fully digital
controller is setup to confirm the tracking performance.
封面
1 Introduction
1.1 Motivation and Related Resesrches
1.2 Contribution of the Dissertation
1.3 Organization of the Dissertation
2 H∞ Fuzzy Tracking Control Design for Nonlinear Dynamic Systems via TS Fuzzy Model
2.1 Problem Formulation
2.2 Fuzzy Tracking Control Design
2.3 Fuzzy Observer-Based Tracking Control Design
2.4 Simulation Examples
2.5 Conclusions
3 H∞Fuzzy Decentralized Tracking Control Design for Nonlinear Interconnected Systems
3.1 Problem Formulation
3.2 Decentralized Tracking Control of Interconnected Systems
3.3 Decentralized Observer Synthesis for Nonlinear Interconnected Systems
3.4 simulation Examples
3.5 Conclusions
4 H∞Decentralized Fuzzy Tracking Control Design for Constrained Mulitibody System
4.1 Dynamics of Constrained Multibody Systems
4.2 Identifieation of Tackagi-Sugeno Fuzzy Model for Constrained Multibody Systems
4.3 H∞Decentralized Fuzzy Tracking Control Design of Constrained Multibody Systems
4.4 Conclusion Remarks
5 Implementation of H∞ Decentralized Fuzzy Tracking Control Design for Constrained Multibody Systems
5.1 Intrduction to Mechanical Systems
5.2 Hardware Implementation: Actuators, Drivers, Encoder and Computer-Based Controller
5.3 Software Implementation: Programming PMAC2
5.4 Experimental Results
5.5 Conclusion Remarks
6 Conclusions and Suggestions of Future Researches
6.1 Conclusions
6.2 Suggestions of Future Researches
[1] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear
Quadratic Methods. Englewood Cliffs, N.J.: Prentice Hall, 1990.
[2] B. R. Barmish, ''Necessary and Sufficient Conditions for
Quadratic Stability of an Linear Systems,'''' J. Optimize. Theory
Appl, vol. 46, no. 4, pp. 399-408, 1985.
[3] J. J. Buckley, ''Theory of Fuzzy Controller: An
Introduction,'''' Fuzzy Sets and Systems, vol. 51, pp. 249-258,
1992.
[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, SIAM,
Philadelphia, 1994.
[5] W. S. Chan and C. A. Desoer, ''Eigenvalue Assignment and
Stabilization of Interconnected Systems Using Local Feedback,''''
IEEE Trans. Automatic Contr., vol. AC-25, pp. 106-107, 1980.
[6] Y. S. Chen and D. J. N. Limebeer, ''Robust Stability of
additively perturbed interconnected systems,'''' IEEE Trans.
Automatic Contr., vol. AC-29, pp. 1069-1075, 1984.
[7] B. S. Chen and W. S. You, ''Robust Stabilization in
Observer-Based Feedback Control Systems Under Nonlinear
Time-Varying Perturbations or Unmodelled Dynamics,'''' IEEE Trans.
Automatic Contr., AC-32, no. 12, pp. 1131-1135, 1987.
[8] B. S. Chen and C. H. Lo, ''Necessary and Sufficient Conditions
for Robust Stabilization of Perturbed Observer-Based Compensating
Systems,'''' INT. J. Control, vol. 49. no. 3, pp. 937-960, 1989.
[9] B. S. Chen, T. S. Lee and J. H. Feng, ''A Nonlinear
H-infinity Control Design in Robotic Systems under Parameter
Perturbation and External Disturbance,'''' Int. J. Control., vol.
59, pp. 439-461, 1994.
[10] B. S. Chen, C. H. Lee and Y. C. Chang, ''H-infinity Tracking
Design of Linear Systems: Adaptive Fuzzy Approach,'''' IEEE Trans.
on Fuzzy Systems, vol. 4, no. 1, pp. 32-43, 1996.
[11] B. S. Chen, H. J. Uang and C. S. Tseng, ''Robust Tracking
Enhancement of Robot Systems Including Motor Dynamics: A
Fuzzy-Based Dynamic Game Approach,'''' IEEE Trans. Fuzzy Systems,
vol. 6, no. 2, pp. 538-552, Nov., 1998.
[12] B. S. Chen, C. S. Tseng and H. J. Uang, ''Robustness Design
of Nonlinear Dynamic Systems via Fuzzy Linear Control,'''' IEEE
Trans. Fuzzy Systems, vol. 7, no. 5, pp. 571-585, Oct., 1999.
[13] B. S. Chen, C. S. Tseng and H. J. Uang, ''Mixed
H-2/H-infinity Fuzzy Control Design for Nonlinear Dynamic
Systems: An LMI Approach,'''' to appear in IEEE Trans. Fuzzy
Systems, 2000.
[14] H. Chapellat, M. Dahleh, and S. P. Bhattacharyya, ''On robust
nonlinear stability of interval control systems,'''' IEEE Trans.
Automatic Contr., AC-36, pp. 59-67, 1991.
[15] M. Corless and G. Leitmann, ''Continuous state feedback
guaranteeing uniform ultimate boundedness for uncertain dynamic
systems,'''' IEEE Trans. Automatic Contr., AC-26, pp. 1139-1144,
Oct. 1981.
[16] M. J. Chen and C. A. Desoer, ''Algebraic Theory for Robust
Stability of Interconnected Systems: Necessary and Suffcient
Conditions,'''' IEEE Trans. Automatic Contr., vol. AC-29, pp.
511-519, 1984.
[17] Y. H. Chen, ''Decentralized Robust Control System Design for
Large-Scale Uncertain Systems,'''' Int. J. Contr., vol. 111, pp.
1195-1205, 1988.
[18] G. Chen and D. Zhang, ''Backing Up a Truck-trailer with
Suboptimal Distance Trajectories,'''' Proceedings of the Fifth IEEE
International Conference, vol. 2, pp. 1439-1445, 1996.
[19] Y. M. Cho and R. Rajamani, ''A Systematic Approach to
Adaptive Observer Synthesis for Nonlinear Systems,'''' IEEE Trans.
on Automat. Contr. vol. 42, no. 4, pp. 534-537, 1997.
[20] C. M. Cheng, N. W. Rees, ''Stability Analysis of Fuzzy
Multivariable Systems: Vector Lyapunov Function Approach,'''' IEE,
Proc.-Control Theory Appl., vol. 144, no. 5, Sep., 1997.
[21] M. Chilali, and P. Gahinet, ''H-infinity design with Pole
Placement Constraints: An LMI Approach,'''' IEEE Trans. on Automat.
Contr., vol. 41, no. 3, pp. 358-367, Mar., 1996.
[22] E. J. Davison, ''The Decentralized Stabilization and Control
of Unknown Nonlinear Time Varying Systems,'''' Automatica, vol. 10,
pp. 309-316, 1974.
[23] J. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis,
''State Space Solution to Standard H-infinity Control Problems,''''
IEEE Trans. on Automat. Contr., vol. 34, no. 8, pp. 831-847, 1989.
[24] B. A. Francis, A Course in H-infinity Control Theory,
Lecture Notes in Control Inform. Sci., vol. 8, Springer Verlag,
Berlin, 1987.
[25] G. Feng, S. G. Cao, N. W. Rees and C. K. Chak, ''Design of
Fuzzy Control Systems with Guaranteed Stability,'''' Fuzzy Sets and
Systems, vol. 85, pp. 1-10, 1997.
[26] Z. Geng, L. S. Haynes, J. D. Lee and R. L. Carroll, ''On the
Dynamic Model and Kinematic Analysis of a Class of Stewart
Platform,'''' Robotic and Autonomous Systems, vol.9 pp. 237-254,
1992.
[27] L. T. Gruji''c and D. D. Siljak, ''Asymptotic Stability and
instability of large scale systems,''''IEEE Trans. Automatic
Contr., vol. AC-18, pp. 636-645, 1973.
[28] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI
Control Toolbox, Natick, MA: The MathWorks, 1995.
[29] G. C. Hwang and S. C. Lin, ''A Stability Approach to Fuzzy
Control Design for Nonlinear Systems,'''' Fuzzy Sets and Systems,
vol. 48, pp. 279-287, 1992.
[30] A. Isidori and A. Asolfi, ''Disturbance Attenuation and
H-infinity Control via Measurement Feedback in Nonlinear
Systems,'''' IEEE Trans. on Automat. Contr., vol. 37, pp.
1283-1293, 1992.
[31] A. Isidori, ''H-infinity Control via Measurement Feedback
for Affine Nonlinear Systems,'''' Int. J. Robust Nonlinear Contr.,
1994.
[32] A. Jadbabaie, M. Jamshidi and A. Titli, ''Guaranteed-Cost
Design of Continuous-Time Takagi-Sugeno Fuzzy Controllers via
Linear matrix Inequalities,'''' IEEE World Congress on
Computational Intelligence, Anchorage, Alaska, pp. 268-273, May,
1998.
[33] C. C. Kung and H. H. Li, ''Tracking Control of Nonlinear
Systems by Fuzzy Model-Based Controller,'''' Proceedings of the
Sixth IEEE International Conference, vol. 2, pp. 623-628, 1997.
[34] E. Kim, M. Park, S. Ji and M. Park, ''A New Approach to Fuzzy
Modeling,'''' IEEE Trans. Fuzzy Systems, vol. 5, no. 3, pp.
328-337, Aug. 1997.
[35] H. K. Khalil, Nonlinear systems, Prentice -Hall, Inc. 1996.
[36] P. P. Khargonekar, I. R. Petersen and K. Zhou, ''Robust
Stabilization of Linear Systems: Quadratic Stability and
H-infinity Control Theory,'''' IEEE Trans. on Automat. Contr., vol.
35, no. 3, pp. 356-361, 1990.
[37] D. J. N. Limebeer and Y. S. Hung, ''Robust Stability of
Interconnected System,'''' IEEE Trans. Circuit Syst., vol. CAS-30,
pp. 397-403, 1983.
[38] C. C. Lee, ''Fuzzy Logic in Control Systems: Fuzzy Logic
Controller-Part I and Part II,'''' IEEE Trans. on Syst., Man,
Cybern., vol. 20, no. 2, pp. 404-435, 1990.
[39] J.P. LaSalle, ''Some Extensions of Lyapunov''s Second
Method,'''' IRE Trans. Circuit Theory, pp. 520-527, Dec. 1960.
[40] Landau and D. Yoan, Adaptive Control: the Model Reference
Approach, Dekker, New York, 1979.
[41] D. G. Luenberger, ''Observers for Multivariable System,''''
IEEE Trans. Automatic Contr., vol. 11, pp. 190-197, 1966.
[42] K. M. Lee and D. K. Shah, ''Kinematic Analysis of a
Three-Degree-of-Freedom In-Parallel Actuated Manipulator,'''' IEEE
Journal of Robotics and Automation, vol. 4, no. 3, pp. 354-360,
June, 1988.
[43] K. M. Lee and D. K. Shah, ''Dynamic Analysis of a
Three-Degree-of-Freedom In-Parallel Actuated Manipulator,'''' IEEE
Journal of Robotics and Automation, vol. 4, no. 3, pp. 361-367,
June, 1988.
[44] X. Ma, Z Sun, Y. He, ''Analysis and Design of Fuzzy
Controller and Fuzzy Observer,'''' IEEE Trans. on Fuzzy Systems,
vol. 6, no. 1, Feb. , 1998.
[45] A. K. Mahalanabis and R. Singh, ''On Decentralized Feedback
Stabilization of Large-Scale Interconnected Systems,'''' Int. J.
Contr., vol. 32, pp. 115-126, 1980.
[46] A. N. Michel and R. K. Miller, Qualitative Analysis of Large
Scale System, Academic Press: New York, 1977.
[47] K. S. Narendra, A. M. Annaswamy, ''A New Adaptation Law for
Robust Adaptation Without Persistent Excitation,'''' IEEE Trans. on
Automat. Contr., AC-32, pp. 134-145, 1987.
[48] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems,
Prentice-Hall, Inc. 1989.
[49] R. T. Reichert, ''Dynamic Scheduling of Modern Robust Control
Autopilot Designs for Missile,'''' IEEE Control Systems Magazine,
vol. 12, pp. 35-42, 1992.
[50] D. D. Siljak, ''On Stability of Large Scale Systems Under
Structural Perturbation,'''' IEEE Trans. Syst., Man, Cybern., vol.
SMC-3, pp. 415-417, 1973.
[51] D. D. Siljak and M. Vukcevic, ''Decentralization,
Stabilization, and Estimation of Large-Scale Systems,'''' IEEE
Trans. Automat. Contr., vol. AC-21, pp. 363-366, 1976.
[52] D. D. Siljak, Large-Scale Dynamic Systems: Stability and
Structure, North-Holland, 1978.
[53] M. Sugeno and K. Tanaka, ''Successive Identification of Fuzzy
Model,'''' Fuzzy Sets and Systems, vol. 28, pp. 15-33, 1988.
[54] M. Sugeno and T. Yasukawa, ''A Fuzzy-Logic-Based Approach to
Qualitative Modeling,'''' IEEE Trans. Fuzzy Systems, vol.1, no.1,
pp. 7-31, Feb. 1993.
[55] A. Stoorvogel, The H-infinity Control Problem: A State Space
Approach. New York: Prentice Hall, 1992.
[56] J. T. Spooner, K. M. Passino, ''Stable Adaptive Control Using
Fuzzy Systems and Neural Networks,'''' IEEE Trans. on Fuzzy
Systems, vol. 4, no. 3, Aug., 1996.
[57] S. Sastry and M. Bodson, Adaptive Control: Stability,
Convergence and Robustness, Prentice-Hall, Englewood Cliffs, NJ,
1989.
[58] C. Scherer, and P. Gahinet, ''Multiobjective Output-Feedback
Control via LMI Optimization,'''' IEEE Trans. Automat. Contr., vol.
42, no. 7, pp. 896-911, July, 1997.
[59] B. Shahian, ''Decentralized Control Using Observers,'''' Int.
J. Contr., vol. 44, pp. 1125-1135, 1986.
[60] D. Stewart, ''A Platform with Six Degree of Freedom,'''' Proc.
Inst. Mech. Eng., vol. 180, pt. 1, no. 15, pp. 371-386, 1965.
[61] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice
-Hall, Inc. 1991.
[62] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control,
John Wiley & Sons, 1989.
[63] W. E. Thompson, ''Exponential Stability of Interconnected
Systems,'''' IEEE Trans. Automatic Contr., vol. AC-15, pp. 504-506,
1970.
[64] T. Takagi and M. Sugeno, ''Fuzzy Identification of Systems
and Its Applications to Modeling and Control,'''' IEEE Trans. on
System, Man, Cybern., vol. 15, pp. 116-132, 1985.
[65] K. Tanaka, T. Ikeda, and H. O. Wang, ''Robust Stabilization
of a Class of Uncertain Nonlinear Systems via Fuzzy Control:
Quadratic Stabilizability, H-infinity Control Theory, and Linear
Matrix Inequalities,'''' IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
pp. 1-13, 1996.
[66] K. Tanaka, T. Ikeda and H. O. Wang, ''A Unified Approach to
Controlling Chaos via an LMI-Based Fuzzy Control System Design,''''
IEEE Trans. Circuits and Systems, vol. 45, no. 10, pp. 1021-1040,
Oct. 1998.
[67] H. O. Wang, K. Tanaka and M. F. Griffin, ''An Approach to
Fuzzy Control of Nonlinear Systems: Stability and Design
Issues,'''' IEEE Trans. on Fuzzy Systems, vol. 4, no. 1, pp. 14-23,
1996.
[68] W. J. Wang and C. F. Cheng, ''Robustness of Perturbed
Large-Scale Systems with Local Constant State Feedback,'''' Int. J.
Contr., vol. 50, pp. 373-384, 1989.
[69] W. J. Wang and H. R. Lin, ''Fuzzy Control Design for the
Trajectory Tracking on Uncertain Nonlinear Systems,'''' IEEE Trans.
Fuzzy Systems, vol. 7, no. 1, pp. 53-62, Feb., 1999.
[70] C. C. Wong and C. C. Chen, ''A Clustering-Based Method for
Fuzzy Modeling,'''' IEICE Trans. Inf. & Syst., vol. E82-D, no. 6,
pp.1058-1065, June, 1999.
[71] H. Ying, W. Silver and J. J. Buckley, ''Fuzzy Control Theory:
A Nonlinear Case,'''' Automatica, vol. 26, pp. 513-520, 1990.
[72] H. Ying, ''Analytical Analysis and Feedback Linearization
Tracking Control of the General Takagi-Sugeno Fuzzy Dynamic
Systems,'''' IEEE Trans. Syst., Man, Cybern., vol. 29, no. 1, pp.
290-298, 1999.
[73] L. S. You and B. S. Chen, ''Tracking Control Designs for Both
Holonomic and Nonholonomic Constrained Mechnical Systems: A
Unified Viewpoint,'''' International Journal of Control, vol. 58,
pp. 587-612, 1993.
[74] K. E. Zanganeh, R. Sinatra and J. Anbeles, '' Kinematics and
Dynamics of a Six-Degree-of-Freedom Parallel Manipulator with
Revolute Legs,'''' Robotics vol. 15, pp. 385-394, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top