|
1. Tiollais, P., C. Pourcel, and A. Dejean. 1985. The hepatitis B virus. Nature317:489–495. 2. Shih, C., P.-C. Tai, W. Whitehead, S. Hosono, C.-S. Lee, and C.-S. Yang.1996. Hepatitis B and C viruses and liver cancer, p. 824–834. In J. R. Bertino(ed.), Encyclopedia of cancer, vol. II. Academic Press, Inc., New York, N.Y. 3. Chen, D. S. 1993. From hepatitis to hepatoma: Lessons from type Bviral hepatitis. Science 262, 369±370. 4. Butel, J. S. 2000. Viral carcinogenesis: Revelation of molecular mechanismsand etiology of human disease. Carcinogenesis 21, 405±426. 5. Gunther, S., et al., Naturally occurring variants of hepatitis B virus. Adv Virus Res, 1999. 52: p. 25-137. 6. Akarca, U.S. and A.S. Lok, Naturally occurring core-gene-defective hepatitis B viruses. J Gen Virol, 1995. 76 ( Pt 7): p. 1821-6. 7. Kay, A. and F. Zoulim, Hepatitis B virus genetic variability and evolution. Virus Res, 2007. 127(2): p. 164-76. 8. Beck, J. and M. Nassal, Hepatitis B virus replication. World J Gastroenterol, 2007. 13(1): p. 48-64. 9. Twu, J.S. and R.H. Schloemer, Transcriptional trans-activating function of hepatitis B virus. J Virol, 1987. 61(11): p. 3448-53. 10. Spandau, D.F. and C.H. Lee, trans-activation of viral enhancers by the hepatitis B virus X protein. J Virol, 1988. 62(2): p. 427-34. 11. Hunt, Richard (2007-11-21). Hepatitis viruses. University of Southern California, Department of Pathology and Microbiology.Retrieved 2008-03-13. 12. Nassal, M., Hepatitis B viruses: reverse transcription a different way. Virus Res, 2008. 134(1-2): p. 235-49. 13. Urban, S., et al., The replication cycle of hepatitis B virus. J Hepatol, 2010. 52(2): p. 282-4. 14. Summers J, Mason WS (1982) Replication of the genome of a hepatitis B–likevirus by reverse transcription of an RNA intermediate. Cell 29: 403–415. 15. Chan, H.L., M. Hussain, and A.S. Lok, Different hepatitis B virus genotypes are associated with different mutations in the core promoter and precore regions during hepatitis B e antigen seroconversion. Hepatology, 1999. 29(3): p. 976-84. 16. Wynne, S.A., R.A. Crowther, and A.G. Leslie, The crystal structure of the human hepatitis B virus capsid. Mol Cell, 1999. 3(6): p. 771-80. 17. Li, H.C., et al., Nuclear export and import of human hepatitis B virus capsid protein and particles. PLoS Pathog, 2010. 6(10): p. e1001162. 18. Yeh, C.T., Y.F. Liaw, and J.H. Ou, The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. J Virol, 1990. 64(12): p. 6141-7. 19. Gunther, S., et al., Enhanced replication contributes to enrichment of hepatitis B virus with a deletion in the core gene. Virology, 2000. 273(2): p. 286-99. 20. Marinos, G., et al., Hepatitis B virus variants with core gene deletions in the evolution of chronic hepatitis B infection. Gastroenterology, 1996. 111(1): p. 183-92. 21. Gunther, S., et al., Accumulation and persistence of hepatitis B virus core gene deletion mutants in renal transplant patients are associated with end-stage liver disease. Hepatology, 1996. 24(4): p. 751-8. 22. Reinke, P., et al., Association between the accumulation of hepatitis B virus core gene deletion mutants and progression of liver disease in long-term renal transplant patients. Transplant Proc, 1997. 29(1-2): p. 815-6. 23. Bock, C.T., et al., Relevance of hepatitis B core gene deletions in patients after kidney transplantation. Gastroenterology, 2003. 124(7): p. 1809-20. 24. Revill, P.A., et al., Identification of a novel hepatitis B virus precore/core deletion mutant in HIV/hepatitis B virus co-infected individuals. AIDS, 2007. 21(13): p. 1701-10. 25. Fukushima, K., et al., A case of HIV co-infected with hepatitis B virus precore/core deletion mutant treated by entecavir. Hepatol Res, 2008. 38(8): p. 842-6. 26. Ni, Y.H., et al., Long-term follow-up study of core gene deletion mutants in children with chronic hepatitis B virus infection. Hepatology, 2000. 32(1): p. 124-8. 27. Preikschat, P., et al., Expression, assembly competence and antigenic properties of hepatitis B virus core gene deletion variants from infected liver cells. J Gen Virol, 1999. 80 ( Pt 7): p. 1777-88. 28. Preikschat, P., et al., Interaction of wild-type and naturally occurring deleted variants of hepatitis B virus core polypeptides leads to formation of mosaic particles. FEBS Lett, 2000. 478(1-2): p. 127-32. 29. Kazaks, A., et al., Mosaic particles formed by wild-type hepatitis B virus core protein and its deletion variants consist of both homo- and heterodimers. FEBS Lett, 2003. 549(1-3): p. 157-62. 30. Razanskas, R. and K. Sasnauskas, A novel human protein is able to interact with hepatitis B virus core deletion mutant but not with the wild-type protein. Virus Res, 2009. 146(1-2): p. 130-4. 31. Yuan, T.T., et al., Functional characterization of naturally occurring variants of human hepatitis B virus containing the core internal deletion mutation. J Virol, 1998. 72(3): p. 2168-76. 32. Sahu, G.K., et al., Out-of-frame versus in-frame core internal deletion variants of human and woodchuck hepatitis B viruses. Virology, 2002. 292(1): p. 35-43. 33. Bartenschlager, R. and H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J, 1992. 11(9): p. 3413-20. 34. Yap, T.A., et al., Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol, 2008. 8(4): p. 393-412. 35. Dahmani, R., P.A. Just, and C. Perret, The Wnt/beta-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol, 2011. 35(11): p. 709-13. 36. Hayden, M.S. and S. Ghosh, Shared principles in NF-kappaB signaling. Cell, 2008. 132(3): p. 344-62. 37. Peyrou, M., L. Bourgoin, and M. Foti, PTEN in liver diseases and cancer. World J Gastroenterol, 2010. 16(37): p. 4627-33. 38. Ambros, V., microRNAs: tiny regulators with great potential. Cell, 2001. 107(7): p. 823-6. 39. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 40. Carrington, J.C. and V. Ambros, Role of microRNAs in plant and animal development. Science, 2003. 301(5631): p. 336-8. 41. Zhang, B., et al., microRNAs as oncogenes and tumor suppressors. Dev Biol, 2007. 302(1): p. 1-12. 42. Murakami, Y., et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006. 25(17): p. 2537-45. 43. Kutay, H., et al., Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem, 2006. 99(3): p. 671-8. 44. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647-58. 45. Wong, Q.W., et al., MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology, 2008. 135(1): p. 257-69. 46. Varnholt, H., et al., MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology, 2008. 47(4): p. 1223-32. 47. Gramantieri, L., et al., Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res, 2007. 67(13): p. 6092-9. 48. Li, Q.J., et al., MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol, 2012. 49. Li, J., et al., miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer, 2010. 10: p. 354. 50. Moriarty, C.H., B. Pursell, and A.M. Mercurio, miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem, 2010. 285(27): p. 20541-6. 51. Zhu, J., et al., Down-Regulation of miR-183 Promotes Migration and Invasion of Osteosarcoma by Targeting Ezrin. Am J Pathol, 2012. 180(6): p. 2440-51. 52. Wang, G., W. Mao, and S. Zheng, MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett, 2008. 582(25-26): p. 3663-8.
|