跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊緯
研究生(外文):Jiun-Wei Liou
論文名稱:摻雜氧化鎂鈮酸鋰準相位匹配大溫度頻寬綠光倍頻雷射晶片研製
論文名稱(外文):Quasi-Phase-Matching Second Harmonic Generation Green Laser with Large Temperature Bandwidth On PPMgO:LiNbO3
指導教授:彭隆瀚
指導教授(外文):Lung-Han Peng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:99
中文關鍵詞:準相位匹配摻雜氧化鎂鈮酸鋰溫度頻寬
外文關鍵詞:Quasi-phase matchingMgO:LNtemperature bandwidth
相關次數:
  • 被引用被引用:5
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要以摻雜氧化鎂鈮酸鋰為材料,研製週期性極化反轉倍頻雷射晶片,目標為利用此晶片達成輸入1064nm紅外光準相位匹配倍頻產生532nm綠光。
製程部分以未摻雜共熔鈮酸鋰(CLN)高電壓致極化反轉經驗為基礎加以改良,在厚度為0.5um摻雜氧化鎂鈮酸鋰(MgO:LN)晶片成功研製出最小週期為6.91um第一階一維和多週期第一階一維週期性結構;在厚度為1um摻雜氧化鎂鈮酸鋰(MgO:LN)晶片也成功研製出13.8um第二階一維及6.94um第一階準一維的週期性結構。
光學實驗部分只對0.5um厚摻雜氧化鎂鈮酸鋰(MgO:LN)晶片做討論。單週期結構、長度5um,以170MW/cm2(180mW) 光腰半徑60um奈秒泵浦條件下,產生80mW的綠光輸出、轉換效率約在46%;並在區段啁啾結構設計下,於多週期結構、長度5um,以195MW/cm2(350mW)光腰半徑75um之奈秒泵浦條件下,產生63mW的綠光輸出,轉換效率約20%,且可接受溫度頻寬達50度。相較於同樣長度單週期設計,雖然轉換效率降低了2.3倍,但提升了10倍的可接受溫度頻寬。


This thesis reports the fabrication of periodically poled magne-sium-oxide-doped congruent lithium niobate (PPMgLN), to convert the 1064nm infrared laser into 532nm green light by using the technique of quasi-phase matching second harmonic generation(QPM-SHG).
We improved the fabrication technique on electric poling method of congruent lithium niobate. This method leads to the realization of periodically poled QPM structures on 0.5mm and 1mm thick MgO:LiNbO3 substrates. The smallest periods achieved in this work are (i) 6.91um for the 1st - order 、(ii) chirped-gratings for the 1st-order QPM device. For the 1mm thick substrate , the smallest periods we can make are (i) 6.96um for the 1st-order quasi-1D、(ii)13.8um for the 2nd–order QPM device.
For the characterization we measured SHG on PPMgLN with 5mm crystal length when pumped by a pulsed 1064nm laser of 159 MW/cm2 (180mW) with 5ns pulse width of 60um beam waist. The device exhibits 80mW green light output with conversion efficiency attain 46% . Second, the design of chirped grating structure with 5mm long are tested by a pulsed 1064 nm laser of 195 MW/cm2 (350mW) with beam radius 75um. The device exhibits 63mW green light output with the conversion efficiency 20%, and the acceptance temperature bandwidth is about 50 degree. In the same length, the acceptance temperature bandwidth for the segment-chirped design exceeds that of single period by a factor of 10, whereas the conversion efficiency is reduced only by a factor of 2.3 .



第一章 緒論 1
1.1 研究背景與動機 1
1.2 常用非線性晶體介紹 5
1.2.1 熱導率(thermal conductivity) 6
1.3 鈮酸鋰晶體 8
1.3.1 鈮酸鋰歷史簡介 8
1.3.2 鈮酸鋰的鐵電相 9
1.3.3 鈮酸鋰的光折變效應 12
1.3.4 鈮酸鋰的焦電性質(pyroelectric properties) 13
1.3.5 鋰空缺模型 13
1.3.6 鈮酸鋰之摻雜 14
1.4 非線性頻率轉換技術 16
1.4.1 和頻產生 16
1.4.1 差頻產生 17
1.4.1 倍頻產生 17
1.5 論文內容之概述 18
第二章 非線性頻率轉換理論 19
2.1 非線性頻率轉換與相位匹配 19
2.1.1 非線性頻率轉換 19
2.1.2 倍頻產生 21
2.1.3 平面波近似 22
2.1.4 高斯波近似 24
2.2 相位匹配 28
2.2.1 雙折射相位匹配 28
2.3 準相位匹配 30
2.3.1 一維空間 30
2.3.2 二維空間 36
2.4 可接受波長頻寬與溫度頻寬 40
2.5 增加可接受波長頻寬與溫度頻寬 43
2.5.1 級聯結構增加可接收頻寬 45
第三章 設計與製程 47
3.1 週期設計 47
3.1.1 區段啁啾光柵(segment chirped grating)設計 48
3.2 極化反轉模型 53
3.3 高電壓致極化反轉法 55
3.3.1 製作流程 55
3.3.2 高電壓系統 57
3.3.3 液態電極與基座設計 58
3.3.4 金屬電極之選擇 59
3.3.5 正向矯頑電場量測 60
3.3.6 高電壓波形 61
3.3.7 反轉時間計算 64
3.4 製程結果與討論 64
3.4.1 溫度效應 65
3.4.2 絕緣層沉積 66
3.4.3 邊緣效應與成核點密度 69
3.4.4 準一維結構 72
3.4.5 一維結構 73
3.4.6 區段啁啾結構0.5mm摻雜氧化鎂鈮酸鋰製作結果 74
3.4.7 1mm 摻雜氧化鎂鈮酸鋰 76
第四章 光學量測與分析 79
4.1 綠光倍頻實驗架設 79
4.2 綠光倍頻實驗結果與分析 80
4.2.1 單週期元件特性量測與討論 81
4.2.2 相位不匹配下的影響 87
4.3 區段啁啾光柵結構量測 88
4.3.1 九週期、相位溫度間距5℃、總長6mm設計 88
4.3.2 八週期、相位溫度間距10℃、總長5.5mm設計 90
4.3.3 十週期、相位溫度間距7.5℃、總長5mm設計 91
4.3.4 十週期、相位溫度間距7.5℃、總長4.6mm設計 92
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 95
參考文獻 96

1 Hiroyuki Furuya, Akihiro Morikawa, Kiminori Mizuuchi, and Kazuhisa Yamamoto, “High-Beam-Quality Continuous Wave 3W Green-Light Generation in Bulk Pe-riodically Poled MgO:LiNbO3,” Jpn. J. Appl. Phys., vol. 45, no.8B, pp. 6704–6707, 2006
2 Tetsuro Mizushima, Hiroyuki Furuya, Shinichi Shikii, Koichi Kusukame, Kiminori Mizuuchi, and Kazuhisa Yamamoto, “Second Harmonic Generation with High Conversion Efficiency and Wide Temperature Tolerance by Multi-Pass Scheme,” Appl. Phys. Express, vol. 1, 032003, 2008
3 V. Bhatia, M. Hempstead, J. Grochocinski, N. Sekiguchi, A. Okada, D. Loeber “Compact and efficient green lasers for mobile projector applications,” Journal of the Society for Information Display, vol. 17, no. 1, pp. 47-52, 2009
4 T. Yokoyama, K. Mizuuchi, K. Nakayama, A. Kurozuka, T. Sugita, A. Morikawa, K. Yamamoto, “Compact intracavity green light source with wide operation tempera-ture range using periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys., vol. 47, no. 8, pp. 6787-6789, 2008
5 http://www.thedesignblog.org/entry/microvision-showwx-portable-projector-display- home-theater-sized-images/
6 Ichiro Shoji, Takashi Kondo, Ayako Kitamoto, Masayuki Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients” J. Opt. Soc. Amer. B, vol. 14, no. 9, pp.2268-2294, 1997
7 Sunao Kurimura, “Green Laser Technology for Display Application,” International Displays Workshop, 2009
8 David Hum, “Frequency conversion in near –stoichiometric Lithiun Tantalate fa-bracatef by vapor transport equilibration,” Stanford University, 2007
9 邱博駿, “波長轉換用鈮酸鋰晶體光纖之研製,”國立中山大學通訊工程研究所碩士論文, 2005
10 B. T. Matthias, andJ. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886-1887, 1949
11 A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by czochralsk technique, ” Journal of the American Ceramic Society, vol. 48, pp. 112-113, 1965
12 R. L. Byer, J. F. Young, and Feigelso. Rs, “Growth of high-quality LiNbO3 crys-tals from congruent melt,” J. Appl. Phys., vol.41, no.6, pp. 2320-2365, 1970
13 Junji Hirohashi, “Characterization of domain switching and optical damage prop-erties in ferroelectrics,” Department of Applied Physics Royal Institute of Tech-nology, 2006
14 胡明理, “Zn:LiNbO3之晶體生長與研究特性,”國立中央大學光電科學研究所博士論文, 2004
15 G. Malovichko, V. Grachev, and O. Schirmer, “Interrelation of intrinsic and ex-trinsic defects – congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B , vol. 68, pp. 785-793, 1999
16 Yunlin Chen, Weiguo Yan, Juan Guo, Shaolin Chen, and Guangyin Zhang, Zong-ren Xia “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett., vol. 87, 212904, 2005
17 K. Kitamura , Y. Furukawa , S. Takekawa , T. Hatanaka , H. Ito, and V. Gopalan , “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engi-neering for optical devices,” Ferroelectrics, vol. 257, pp. 235-243, 2001
18 G. D. Boyd, D. A. Kleiman, “parametric interaction of focused Gaussian light beams,” Jpn. J. Appl. Phys., vol.39, no.8, pp. 3597-3640, 1968
19 Vorgelegt von Rene’e Hartke aus Lohne “Intracavity Frequency Doubling of Opt-ically Pumped Semiconductor Disk Lasers to the Green Spectral Range, 2008
20 史毅駿, “鈮酸鋰二維非線性光子晶體之研製,”國立台灣大學光電工程學研究所碩士論文,2002
21 李俊瑩, “摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製,”國立台灣大學光電工程學研究所碩士論文, 2009
22 Kiminori Mizuuchi, Kazuhisa Yamamoto, “Waveguide second-harmonic genera-tion device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts,” Opt. Lett., vol. 23, no.24, pp.1880-1882, 1998
23 Nan Ei Yu, Jung Hoon Ro, and Myoungsik Cha, Sunao Kurimura, Takunori Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped pe-riodically poled LiNbO3 at the communications band,” Opt. Lett., vol. 27, no. 12, pp. 1046-1048, 2002
24 M.L. Bortz, M. Fujimura and M.M. Fejer “Increased acceptance bandwidth for quasi-phase matched second harmonic generation in LiNbO3 waveguides,” Elec-tron. Lett., vol. 30, no.1, pp.34-35, 1994
25 Amirhossein Tehranchi and Raman Kashyap, “ Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation ” Joural of Lightwave Tech-nology, vol. 26, no.3, pp. 343-349, 2008
26 O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depen-dent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 ”Appl. Phys. B , Vol. 91, pp. 343-348, 2008
27 溫建樹, “寬頻準相位匹配非線性過程應用於綠光與藍光產生之研究,”台灣大學光電工程學研究所碩士論文, 2010
28 R. C. Miller and G. Weinreich, “Mechanism for the Sidewise Motion of 180o Do-main Walls in Barium Titanate,” Phys. Rev., vol. 117, pp.1460-1466, 1960.
29 G. D. Miller, “Periodically Poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-Optical Performance,” , 1998
30 林威呈, “利用高介電係數材料與高溫製程作二維非線性光子晶體,”國立台灣大學光電工程學研究所碩士論文, 2004
31 Shigehiro Nagano, Masahiro Konishi, Tsukasa Shiomi, and Makoto Minakata, “Study on Formation of Small Polarization Domain Inversion for High-Efficiency Quasi-Phase-Matched Second-Harmonic Generation Device,” Jpn. J. Appl. Phys., Part1, vol. 42, no.7A, pp. 4334–4339, 2003
32 陳逸豪, “利用鈮酸鋰一維非線性光子晶體產生光參共振可調波長雷射光源之研究,” 國立台灣大學光電工程學研究所碩士論文, 2006
33 房宜澂, “高電壓導致鈮酸鋰區域反轉之研究,” 國立台灣大學光電工程學研究所碩士論文, 1998
34 林立峰, “摻氧化鋅鈮酸鋰二維非線性光子晶體之研究,”國立台灣大學光電工程學研究所碩士論文, 2005
35 H. Ishizuki, and T. Taira, “Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3,” In Technical Digest of Nonlinear Optics, WE35, 2007
36 K.Mizuuchi,A.Morikawa,T.Sugitaand,K.Yamamoto,“Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystal,” Electron. Lett.,vol. 40, no. 13, 2004
37 K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, “Periodic poling of magnesium-oxide-doped lithium niobate,” J.Appl.Phys.,vol.91,no.7, pp.4528-4534, 2002
38 K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys., vol. 96, no.11, pp. 6585-6590, 2004
39 Nobuyuki Horikawa, Takashi Tsubouchi, Masatoshi Fujimura, and Toshiaki Suhara, “Formation of Domain-Inverted Grating in MgO:LiNbO3 by Voltage Application with Insulation Layer Cladding,” Jpn. J. Appl. Phys., vol. 46, no. 8A, pp. 5178–5180, 2007
40 G. Rosenman, Kh. Garb, and A. Skliar M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett., vol. 73, no. 7, pp.1565-1567, 1998
41 Oleg A. Louchev, Nan Ei Yu, Sunao Kurimura, and Kenji Kitamura, “Thermal in-hibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.,vol. 87, 131101 , 2005
42 Moshe B. Oron, David Eger, Moti Katz, Ariel Bruner, AbrahamEng1ander, Yit-shak Tzuk, Raphael Lavi, “Frequency conversion efficiency limitation in periodi-cally poled KTP crystals and waveguides,” Proc. SPIE, vol. 3936, pp.186-199, 2000
43 Peter Janssens, Koen Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE, vol.7232, pp. 7232-34 , 2009
44 胡益寧, “短腔光學參量震盪器與藍光產生器之研究,” ,國立台灣大學光電工程學研究所碩士論文, 2008
45 Hideki Ishizuki, Ichiro Shoji, and Takunori Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett., vol. 82, no.23, pp.4062-4064, 2003


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top