[1] Bilik, and J. Tabrikian, “Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter”, in Proc. of IEEE Int. Conf. Radar, pp.282-287 , Beer-Sheva 84105, Israel, Apr. 2006.
[2] Amer, “Voting-based simultaneous tracking of multiple video objects”, IEEE Trans. on Circuits and Schemes for Video Technology, vol. 15, no. 11, pp.1448-1462, Nov. 2005.
[3] E. Loutas, K. Diamantaras, and I. Pitas, “Occlusion resistant object tracking”, in Proc. of IEEE Int. Conf. on Image Processing, pp.65-68, Oct. 2003.
[4] J. Li, and C. S. Chua, “Transductive inference for color-based particle filter tracking”, in Proc. of IEEE Int. Conf. on Image Processing, pp.14-17, Oct. 2003.
[5] Z. Q. Wen, and Z. X. Cai, “Mean shift algorithm and its application in tracking of objects”, in Int. Conf. on Machine Learning and Cybernetics, pp.4024-4028, Aug. 2006.
[6] Papageorgiou, and T. Poggio, “A trainable scheme for object detection”, International Journal of Computer Vision, vol. 38, no. 1, pp.15-33, 2005.
[7] M. Gavrila, and V. Philomin, “Real-time object detection for ”smart” vehicles”, in Proc. of IEEE Int. Conf. on Computer Vision, pp.20-25, June 1999.
[8] P. Rosin, “Thresholding for change detection”, in Proc. of IEEE Int. Conf. on Computer Vision, pp.274-279, Jan. 1998.
[9] N. Friedman, and S. Russell, “Image segmentation in video sequences: a probabilistic approach”, in Proc. of the 13th conf. on Uncertainty in Articial intelligence, pp.175-181, Aug. 1997.
[10] R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-time tracking of the human body”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp.780-785, July 1997.
[11] Javed, K. Shafique, and M. Shan, “A hierarchical approach to robust background subtraction using color and gradient information”, in Proc. of IEEE Workshop on Motion and Video Computing, pp.22-27, Dec. 2002.
[12] M. Cristani, M. Bicego, and V. Murino, “Integrated region and pixel-based approach to background modeling”, in Proc. of IEEE Workshop on Motion and Video Computing, pp.3-8, Dec. 2002.
[13] C. Stauffer, and E. Grimson, “Adaptive background mixture models for real-time tracking”, in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp.246-252, 1999.
[14] S. Lee, J. J. Hull, and B. Erol, “A bayesian framework for Gaussian mixture background modeling”, in Proc. IEEE Int. Conf. on Image Processing, pp.973-976, Sept. 2003.
[15] Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction”, in Proc. IEEE Int. Conf. on Computer Vision, pp.246-252, June 1999.
[16] M. Heikkila, and M. Pietikainen, “A texture-based method for modeling the background and detecting moving objects”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp.657-652, Apr. 2006.
[17] L.G. Valiant, “A Theory of the learnable”, Communication of ACM, vol. 27, pp.1134–1142, 1984.
[18] Michael Kearns, “Thoughts on Hypothesis Boosting”, Unpublished manuscript, 1988.
[19] Robert E. Schapire, “The Strength of Weak Learnability”, Machine Learning, vol. 5, no. 2, pp.197-227, 1990.
[20] Yoav Freund, “Boosting a Weak Learning Algorithm by Majority”, Information and Computation, vol. 121, no. 2, pp.256-285, Sep. 1995.
[21] Yoav Freund, and Robert E. Schapire, “Experiments with a New Boosting Algorithm”, In Proceedings of the 13th International Conference on Machine Learning, Bari, Italy (ICML). pp.148-156, 1996.
[22] Viola P., and Jones M., “Robust Real-time Object Detection”, International Journal of Computer Vision, IJCV 2004, vol. 57, no. 2, pp.137-154, 2004.
[23] Rainer Lienhart, and Jochen Maydt, “An Extended Set of Haar-like Features for Rapid Object Detection”, IEEE ICIP 2002, vol. 1, pp.900-903, Sep. 2002.
[24] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection”, MRL Technical Report, Intel Labs, May 2002, revised Dec. 2002.
[25] Chang Huang, Bo Wu, Haizhou Ai, and Shihong Lao, “Omni-Directional Face Detection based on Real AdaBoost”, International Conference on Image Processing ( ICIP’04), 2004.
[26] 陳谷瑋, “多類別AdaBoost穩健性研究”, 國立中正大學碩士論文,2005.[27] 吳旻峰, “基於像素導向之階層式特徵與統計式遮罩AdaBoost人臉偵測”, 國立臺灣科技大學碩士論文, 2008.[28] 陳致豪, “以膚色偵測加速AdaBoost人臉偵測”, 明志科技大學 ,2010.
[29] Hammersley J. M., and Morton K. W., “Poor man’s Monte Carlo”, Jurnal of the Royal statistical (society B) (Methodological), vol. 16, pp.23-38, 1954.
[30] Handschin J. E., “Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering”, International Journal of Control, vol. 9, pp.547-559, 1969.
[31] Handschin J. E., “Monte Carlo techniques for prediction and filtering of non-linear stochastic processes”, Automatica, vol. 6, pp.555-563, 1970.
[32] Gordon N. J., Salmond D. J., and Smith A. F. M., ”A novel approach to nonlinear and non-Gaussian Bayesian state estimation”, IEEE Proceeding, vol. 140, pp.107-113, 1993.
[33] Doucet A., Godsill S., and Andrieu C., “On sequential Monte Carlo sampling methods for Bayesian filtering”, Statistics and Computing, vol. 10, no. 3, pp.197-208, 2000.
[34] Kay S. M., “統計信號處理基礎―估計與檢測理論.” 羅鵬飛, 等譯. 北京:電子工業出版社, 2003.
[35] Shneider Y. A., “Method of Statistical Testing(Monte Carlo Method)”, Oxford: Pergamon Press, p.84, 1964.
[36] Wang X., Chen R., and Liu J. S., “Monte Carlo signal processing for wireless communications”, J. VLSI Signal Process, vol. 30, pp.89-105, 2002.
[37] Kong A., Liu J. S., and Wong W. H., “Sequential imputations and Bayesian missing data problems”, J. Am. Stat. Assoc., vol. 89, pp.278-288, 1994.
[38] Sanjeev M., and SimonM., “A tutorial on particle filter for online nonlinear/non-Gaussian Bayesian tracking”, IEEE trans. on Signal Processing, vol. 50, no. 2, pp.174-188, 2002.
[39] Polson N. G., Strond J. R., and Muller P., “Practical filtering with sequential parameter learning”, University of Pennsylvania Working Paper, 2006.
[40] Chyun-Chau Fuh, “Detecting unstable periodic orbits embedded in chaotic systems using the simplex method”, Communications in Nonlinear Science and Numerical simulation, no. 14, pp.1032-1037, 2009.
[41] Liu J S., and Chen R., ”Sequential Monte Carlo methods for dynamic systems”, Journal of the American Statistical Association, vol. 93, no. 443, pp.1032-1044, 1998.
[42] Carpenter J., Clifford P., and Fearnhead P., “An improved particle filter for nonlinear problems”, IEE Proc., Radar sonar Navigation. 1999, vol. 146, pp.2-7, 1999.
[43] Miodrag Bolic, Peter M Djuric, and Sangjin Hong, “New Resampling Algorithms for particle filters ”, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp.589-592, 2003.
[44] Doucet A, de Freitas J, and Gordon N., “Sequential Monte Carlo Methods in Parctice”, New York: Springer, pp.159-175, 2001.
[45] Doucet A, de Freitas J, and Gordon N., “An introduction to sequential Monte Carlo methods”, New York: Springer-Verlag, pp.3-14, 2001.
[46] Hu X L, Schon T B, and Ljung L., “A basic convergence result for particle filtering”, IEEE Transactions Signal Processing, vol. 56, no. 4, pp.1337-1348, 2007.
[47] Crisan D, and Doucet A. “Convergence of sequential Monte Carlo methods”, UnivCambridge, UK, Signal Process Group, Dept Eng, 2000.
[48] 朱志宇. “粒子濾波算法及其應用.” 北京:科學出版社, 2010年6月.
[49] 胡士強, 敬忠良. “粒子濾波原理及其應用.” 北京:科學出版社, 2010年8月.
[50] Nummiaro K., Koller-Meier E., and Van Gool L., “An adaptive color-based particle filter”, Image and Vision Computing, vol. 21, pp.111-123, 2003.