跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪志翰
研究生(外文):HONG, JHIH-HAN
論文名稱:含人工磁導體的圓極化標籤天線於人體應用之設計
論文名稱(外文):Design of Circularly Polarized Tag Antenna with Artificial Magnetic Conductor for On-Body Applications
指導教授:邱建文邱建文引用關係
指導教授(外文):CHIU, CHIEN-WEN
口試委員:鄧聖明紀俞任陸瑞強
口試委員(外文):DENG, SHENG-MINGJI, YU-RENLU, RUEI-CIANG
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:99
中文關鍵詞:超高頻圓極化標籤天線縮小化人工磁導體交叉偶極天線十字開槽型天線高阻抗表面
外文關鍵詞:UHF circularly polarized tag antennaminiaturized artificial magnetic conductorcross-dipole antennacross-slot antennahigh impedance surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在研究含有人工磁導體(Artificial Magnetic Conductor, AMC)的超高頻(UHF)圓極化標籤天線,以應用於人體上的無線射頻識別系統。在未來發展IOT的需求下,將會有各式各樣的物件需要標籤作資訊的傳遞,甚至發展至人體應用時,穿戴式天線將是不可或缺的;每當標籤被應用不同材質的物品時,天線之性能也會隨之改變。傳統的RFID標籤設計方式,必須針對物件之材質給予特定之設計,若是遇到有損材料之物件時,標籤之天線增益會明顯地降低。因此,吾人設計含有人工磁導體(Artificial Magnetic Conductor, AMC)的圓極化標籤天線,此設計的天線若應用於人體和金屬表面時,AMC可以有效的抑制人體和金屬對天線造成不良的影響,提升標籤在物件應用上的讀取距離。
本文首先使用具有極化相關性的人工磁導體(Polarization-dependent artificial magnetic conductor, PDAMC)之設計概念,將一個線性極化偶極標籤轉換成為圓型極化標籤。在圓極化讀取器的應用中不但可以減少3 dB的極化損耗,PDAMC基板同時也阻隔人體的干擾,使得標籤天線的讀取距離更遠,預測讀取距離可達16米。吾人之研究成果可以將標籤天線近距離貼合在AMC表面,達到總體厚度最薄之設計。
在AMC的研究領域裡,圓極化天線之研究相較於線性極化天線是比較複雜的。吾人首先提出含有AMC的圓極化標籤天線,將交叉偶極天線與3×3的AMC進行整合,標籤天線的基板同樣地被貼附於AMC表面上,達到厚度薄之設計目標,其總體厚度只有6.4 mm。在AMC的輔助下,標籤天線在人體應用時的讀取距離被明顯的提升,利用4W EIRP的RHCP讀取器來量測此標籤天線在人體上之讀取距離可達15.7公尺。
為了發展穿戴式天線,吾人也探討利用乳膠材料作為天線和AMC的基板,此圓極化天線其計算的讀取距離可以達到17.5公尺,並且具有可彎曲、不吸水的特點。論文還針對含有AMC結構的圓極化標籤進行陣列縮小化的設計,提出一個圓極化的十字開槽型天線整合在2×2的AMC基板上,得到本論文中面積最小的天線結構其尺寸,僅有131×131 mm2。除了探討AMC陣列數量的減少之外,吾人也提出小型化的AMC結構,透過十字開槽的方式達到小型化AMC的設計,含有小型化的3×3 AMC標籤天線,其計算的讀取距離可達10.8公尺。
This thesis aims at designing UHF tag antennas with artificial magnetic conductor (AMC) for on-body UHF RFID applications. RFID technology has extensive applications in the world markets. In the development of the IOT, there will be various kinds of object using tag antennas to transfer information. Even in case of developing for on-body applications, the wearable device or tags will be indispensable. Whenever the tag is applied on the different objects, the performance of the tag will be changed by the material of object. Designers must seriously consider the object effects on the RFID tags. If the object is a lossy media, the antenna gain will significantly decrease. Therefore, we designed various tag antennas with artificial magnetic conductor. When the tag antenna is pasted on a human body or metal objects, AMC can effectively isolate the bad effects and then read range is increased in the applications.
In the thesis, we used the concept of the PDAMC (Polarization-dependent artificial magnetic conductor) to convert the linearly polarized tag dipole into the circularly polarized (CP) tag. The PDAMC makes the tag reduce the polarization loss of 3 dB for CP reader applications and it also insulate the interference of human body. Thus, the dipole tag has farther read range and its predicted read range can achieve 16 meters. Our research results demonstrate that the tags antenna can be completely pasted on the AMC surface to achieve the design of the thinnest thickness.
The study of circularly polarized antennas is more complex than linear polarized antennas in the field of the AMC research. We proposed a CP cross-dipole tag which was integrated on a square AMC structure. The substrate of the cross-dipole can be pasted on the surface of a 3×3 AMC to achieve the goal of thin thickness. The total thickness is only 6.4 mm. For on-body applications, the read range of the CP tag was significantly increased by the AMC substrate. The read range of 15.7 meters was measured by using a reader of 4W EIRP when the tag was pasted on a human body.
In order to develop a wearable antenna for on-body applications, we also explored the design by using latex substrate which is a flexible material. Since the latex substrate has features of low weight, flexible and non-absorbent, the CP tag was designed directly on the AMC latex substrate. The study finds that the predicted read range achieves 17.5 meters but the size is a little large. Furthermore, the number of the AMC array was further reduced to miniaturize the array size. The CP cross-slot antenna was integrated with a 2×2 AMC structure to achieve the smallest area which is only 131×131×6.4 mm3. In addition to reducing the numbers of AMC array, the proposed miniaturized AMC was designed by using cross-slots cut on the conduct of a unit cell AMC. When the tag is integrated on the miniaturized 3×3 AMC, the read range achieves around 10.8 meters.
摘要.....I
Abstract.....II
致謝.....IV
Table of Contents.....V
List of Tables and Figures.....VI
Chapter 1. Introduction.....1
1.1. Research Motivations.....1
1.2. Literature Review.....3
1.3. Chapter Outlines.....5
Chapter 2. Design of Dipole Antenna on AMC Substrate.....7
2.1. Introduction of AMC.....7
2.2. Design of Polarization-Dependent Artificial Magnetic Conductor (PDAMC).....10
2.3. Characteristics of PDAMC and Dipole Antenna.....13
2.4. CP Dipole Antenna on PDAMC Substrate.....15
2.5. RFID Tag Dipole Antenna Designed on PDAMC Substrate.....16
2.6. Summary.....18
Chapter 3. Design of CP Cross-Dipole Antenna on AMC Substrate.....37
3.1. CP Cross-Dipole Antenna in the Free Space and on the AMC.....37
3.1.1. Design of a CP Cross-Dipole Antenna.....37
3.1.2. Design of a Square Type AMC.....39
3.1.3. Place the Cross-Dipole Antenna over Finite Cells of AMC.....39
3.2. CP Tag Antenna on the AMC Substrate by a T-Matching Transformer.....40
3.2.1. Impedance matching for the Cross-Dipole Tag Antenna.....40
3.2.2. Design of Cross-Dipole Tag on the AMC Substrate.....41
3.3. Tag with a 3×3 AMC Substrate on Human Model.....43
3.4. Summary.....46
Chapter 4. Miniaturization for Wearable RFID Tag Antenna.....71
4.1. Using Latex Material as the AMC Substrate.....71
4.2. Design of Cross-Slot Antenna with a 2×2 AMC Structure.....72
4.3. Miniaturization of AMC Structure.....74
4.4. Summary.....75
Chapter 5. Conclusion and Future Works.....92
Reference.....94
[1]I. G. Li, M. H. Lin, C. W. Chiu, and H. C. Wang, “An antenna system design for UHF RFID application, Bulletin of College of Engineering, National Ilan University,” no. 7, pp. 46-63, Nov. 2011. (ISSN 1815-6495)
[2]D. D. Deavours, “A circularly polarized planar antenna modified for passive UHF RFID,” RFID, 2009 IEEE International Conference, pp. 265-269, Apr. 2009.
[3]D. Sievenpiper, L. Zhang, R. F. J. Boraz, N. G. Alexopolus and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 2059-2074, Nov. 1999.
[4]M. C. Tsai, C. W. Chiu, H. C. Wang, and T. F. Wu, “Inductively coupled loop antenna design for UHF RFID on-body applications,” Progress in Electromagnetics Research, vol. 143, pp. 315-330, 2013.
[5]C. W. Chiu, M. C. Tsai, H. C. Wang, and T. F. Wu, “Broadband T-matching loop tag antenna design for on-body UHF RFID applications,” Microwave and Optical Technology Letters, vol.56, no.5, pp.1194-1200, May 2014.
[6]G. Marrocco, “The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques”, IEEE Antennas Propagation Magazine, vol. 50, no. 1, pp. 66-79, Feb. 2008.
[7]Monza 4 RFID tag chip datasheet, available at: https://support.impinj.com
[8]D. M. Dobkin, The RF in RFID: passive UHF RFID in practice, Published by Newnes, Sep. 2007, pp. 1-504.
[9]K. M. Makhijani and K.G. Maradia RFID “Tag Impendance matching techniques: A survey,” Computational Intelligence and Communication Networks (CICN), Dec. 2015.
[10]D. D. Deavours, "A circularly polarized planar antenna modified for passive UHF RFID", Proc. 2009 IEEE International Conference on RFID, pp. 265-269, April 2009.
[11]G. Marrocco, "RFID antennas for the UHF remote monitoring of human subjects", IEEE Transactions on Antennas and Propagation, vol. AP-55, no. 6, pp. 1862-1870, June 2007.
[12]Y. Kawakami, T. Hori, M. Fjimoto, R. Yamaguchi and K. Cho, “Low-profile design of meta-surface by considering filtering characteristics of FSS,” International Workshop on Antenna Technology, PS2.27, Lisbon, Portudal, Mar. 2010.
[13]Y. Zhang, J. v. Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Plan artificial magnetic conductors and patch antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2704-2712, Oct. 2003.
[14]R. C. Hadarig, M. E. de Cos, and F. Las-Heras, “Novel Miniaturized Artificial Magnetic Conductor,” IEEE Antennas and Wireless Propagation Letters, vo. 12, pp. 174-177, 2013.
[15]M. E. de Cos, and F. Las-Heras, “Design of planar artificial magnetic conductor ground plane using frequency- selective surfaces for frequencies below 1 GHz,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 951-955, 2009.
[16]M. E. De Cos, Y. Alvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1536-1225, 2011.
[17]R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Transactions on Microwave Theory Technology, vol. 47, pp. 2123–2130, Nov. 1999.
[18]M. E. de Cos and F. Las-Heras, "Novel flexible artificial magnetic conductor," International Journal of Antennas and Propagation, Hindawi Publishing Corporation, pp. 1-7, 2012.
[19]M. E. de Cos, Y. Álvarez, R. Hadarig, and F. Las-Heras, “Flexible uniplanar artificial magnetic conductor,” Progress in Electromagnetics Research, vol. 106, pp. 349-362, 2010.
[20]M. Abu, E. E. Husin, A. R. Othman, N. M. Yatim, F. M. Johar, and R. F. Munawar, “Design of Stacked wafers AMC at 920 MHz for Metallic Object Detection in RFID Application,” IEEE Symposium on Wireless Technology and Applications, Kuching, Malaysia. pp. 236-239, Dec. 2013.
[21]S. Zhu, and R. Langley, "Dual-band wearable textile antenna on an EBG substrate,” IEEE Transactions on Antennas Propagation, vol. 57, no. 4, pp. 926-935, Apr. 2009.
[22]H. R. Raad, A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications”, IEEE Transactions on Antennas Propagation, vol. 61, no. 2, pp. 524-531, Feb. 2013.
[23]K. Agarwal, Y. X. Guo, and B. Salam, “Wearable AMC backed near-endfire antenna for on-body communications on latex substrate,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, no. 3, pp. 346-358, March 2016.
[24]M. K. T. Al-Nuaimi, and W. G. Whittow, “Low profile dipole antenna backed by isotropic artificial magnetic conductor reflector,” Proceedings of the 4th European Microwave Conference Antennas and Propagation (EuCAP), pp. 1-5, 2010.
[25]K. Agarwal, Nasimuddin, and A. Alphones, “Design of Compact Circularly Polarized Microstrip Antennas using Meta-surfaces,” Proceedings of the 43rd European Microwave Conference (EuMC’2013), Nuremberg, Germany, pp. 1067-1070, Oct. 2013.
[26]T. Cai, G.-M. Wang, X.-F. Zhang, and J.-P. Shi, “Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator,” IEEE Antenna Wireless Propagation Letters, vol. 14, pp. 1072–1076, Jan. 2015.
[27]Y. Dong, H. Toyao, and T. Itoh, “Compact circularly-polarized patch antenna loaded with metamaterial structures,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4329-4333, Nov. 2011.
[28]H. Mosallaei, and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 2403-2414, Sep. 2004.
[29]K. Agarwal, Nasimuddin, and A. Alphones, “RIS based compact circularly polarized microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 547-554, Feb. 2013.
[30]L. Bernard, G. Chertier, and R. Sauleau, “Wideband circularly polarized patch antennas on reactive impedance substrates,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1015-1018, 2011.
[31]S. X. Ta, I. Park, and R. W. Ziolkowski, “Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN application,” IEEE Antenna Wireless Propagation Letters, vol. 12, pp. 1464-1467, 2013.
[32]K. Saurav, D. Sarkar, and K. V. Srivastava, “Dual band circularly polarized cavity backed crossed dipole antennas,” IEEE Antenna Wireless Propagation Letters, vol. 14, pp. 52-55, Jan. 2015.
[33]H. H. Tran, and I. Park, “A dual-wideband circularly polarized antenna using an artificial magnetic conductor,” IEEE Antenna Wireless Propagation Letters, 15, pp. 950–953, 2016.
[34]S. X. Ta, and I. Park, “Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC surface,” IEEE Antennas Wireless Propagation Letters, vol. 13, pp. 587-590, 2014.
[35]C. Xue, H. Wang, X. Jiang, and Y. Huang, “A single-feed arrow-shaped circularly polarized antenna with unbalanced slotted artificial magnetic conductor for GNSS application,” In Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016 IEEE MTT-S International Microwave Workshop Series, pp. 1-3, July 2016.
[36]F. Yang, and Y. Rahmat-Samii, “Polarization dependent electromagnetic band-gap surfaces: Characterization, designs, and applications,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 339-342, June 2003.
[37]F. Yang, and Y. Rahmat-Samii, “Polarization dependent electromagnetic band-gap (PDEBG) structure: Designs and applications,” Microwave and Optical Technology Letters, vol. 41, no. 6, pp. 439-444, July 2004.
[38]F. Yang, and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Transaction on Antennas Propagation, vol. 53, no. 9, pp. 3083-3086, Sept. 2005.
[39]K. Agarwal, Y. X. Guo, B. Salam, and L. C. W. Albert, “Latex based Near-Endfire Wearable Antenna backed by AMC Surface,” 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), pp. 1-3, 9-11 Dec. 2013.
[40]M. C. Tsai and C. W. Chiu, “UHF RFID Loop Antenna and Circularly Polarized Tag Antenna Designs for On-Body Applications, Master Thesis,” Department of Electronic Engineering, National Ilan University, pp. 1-98, June 2013.
[41]李永勳 and D. K. Cheng, 電磁學 (第二版) Field and Wave Electromagnetics 2, 出版社:艾迪生維斯理, Aug. 31, 1996.
[42]V. F. Fusco, and S. W. Simms, “Reflected circular polarization conservation using textured surface,” IET Electronics Letters, vol. 43, no.18, 2007.
[43]W. C. Yang, K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, “Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna,” IEEE Trans. Antenna Propag., vol. 62, no. 12, pp. 6206-6216, Dec. 2014.
[44]H. Mosallaei, and Y. Rahmat- Samii, “Broadband characterization of complex periodic EBG structure: An FDTD/prony technique based on the split-field approach,” Electromagnetic, vol. 23, no. 2, pp. 135-151, Feb. 2003.
[45]“IEEE Std 145-2013, IEEE Standard for Definitions of Terms for Antennas, available at: http://ieeexplore.ieee.org/document/6758443/ ”
[46]W. C. Yang, W. Q. Che, W.-W. Choi, and K.-W. Tam, “A low-profile circularly dipole antenna using a novel polarization rotation artificial magnetic conductor,” presented at the European Microwave Conference, pp. 374-377, Oct. 2014.
[47]Y. Liu, Q. Liu, and J. Hu, “Novel circular polarization antenna for UHF RFID application,” 2013 IEEE 2nd International Symposium on IMSNA, pp. 986-989, 2013.
[48]J. D. Kraus, Antennas, 2nd ed. New York: McGraw-Hill, 1988, pp. 726–729
[49]C. A. Ou, and C. W. Chiu, “Design of portable UHF circularly-polarized reader antenna and tag antenna,” Department of Electronic Engineering, National Ilan University, pp. 1-97, Oct. 2014.
[50]X. Qing, C. K. Goh, and Z. N. Chen, “Impedance characterization of RFID tag antennas and application in tag co-design,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1268-1274, May 2009.
[51]M. C. Tsai and C. W. Chiu, “UHF RFID Loop Antenna and Circularly Polarized Tag Antenna Designs for On-Body Applications, Master Thesis,” Department of Electronic Engineering, National Ilan University, pp. 1-98, June 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top