跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張以澄
研究生(外文):I-Cheng Chang
論文名稱:黃銅退火雙晶與機械雙晶之顯微組織研究
論文名稱(外文):Studies on Microstructure of Annealing Twin and Deformation Twin in α-brass
指導教授:楊哲人楊哲人引用關係
口試委員:林新智王星豪黃慶淵
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:133
中文關鍵詞:退火雙晶;機械雙晶;黃銅;Misorientation;電子背向散射繞射;穿透式電子顯微鏡
外文關鍵詞:Annealing TwinDeformation TwinBrassMisorientationEBSDTEM
相關次數:
  • 被引用被引用:5
  • 點閱點閱:2705
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙晶是指材料中兩個晶體其方位具有鏡面對稱關係。此論文將針對以下兩種型態的雙晶加以討論:退火雙晶發生在退火時再結晶成長過程中,偶發的堆疊錯誤造成,而機械雙晶則是當基地受到應力應變,為了減少系統總能而產生。較早期的文獻認為機械雙晶僅僅發生在體心立方晶體內,但近期的實驗證明面心立方晶體中不僅有退火雙晶,也可能產生機械雙晶;因此,此篇論文中將介紹較廣為接受的理論及模型來解釋退火雙晶以及機械雙晶的生成原因。
由於雙晶晶界是由Shockley 部分差排以及疊差生成,在某些情況下可以阻礙差排的前進,其往往被視為增強材料機械性質的要素之一;但有時候在雙晶介面附近會有差排滑移現象,因此雙晶材料的延展性可比其他加工硬化材料來得佳。若雙晶晶界附近產生滑移,差排分解成部分差排,則僅有特定方向的部分差排可以繼續往前滑動,晶界會阻礙剩下的差排,因此晶界處會有階梯狀特徵。實驗中我們將以光學顯微鏡以及穿透式電子顯微鏡來觀察退火雙晶、機械雙晶、階梯狀特徵、滑移現象。
此外,本實驗也以電子背向散射繞射儀進行退火雙晶結晶面方位分析,同時以矩陣來計算晶體之間的misorientation;最後利用電子背向散射繞射的結果,施打不同方位的結晶面硬度,以及不同結晶面之間的雙晶晶界硬度。


The term of twin in materials represents two crystals with a mirror symmetry relationship. In this thesis, two types of twins will be discussed: one is the annealing twin, and the other is the deformation twin. The formation of annealing twin, as a result of annealing treatment, can be traced back to growth accidents or stacking faults during recrystallization. The deformation twin, on the other hand, is the accommodation to the deformation in matrix owing to the energy minimums. Additionally, some previous studies show that not only in BCC materials but also in FCC materials do deformation twins exist. Some conceivable models and mechanisms will be presented for the formation of annealing twins and deformation twins.
The twin boundary, formed by Shockley partial dislocations and stacking faults, is believed to enhance the mechanical property of materials because it can obstruct the movement of dislocations; therefore, the interaction of them and the incoming dislocations are noticeable. However, not every twin boundary will hinder the dislocation; unlike other strengthening method, the existence of twin boundary will improve the ductility. Some of dislocations may cross-slip at the twin boundary, and thus the ductility is maintained. One of the trace of cross-slipping is the ledge of twin. When dislocation dissociates into Shockley partials, only part of incoherent twin boundary can glide continuously, while the other part stops and forms a “step” on boundary. In this thesis, the morphology of annealing twin, deformation twin, the ledge, cross-slipping will be shown by optical microscopy and transmission electron microscopy.
Besides, the orientation of annealing twins will be manifested by EBSD, and the identification of misorientation will be identified by orientation matrices. The result of EBSD will be used in the hardness test, which considers the effect of twin boundary in different orientation.


CONTENTS

口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xvii
Chapter 1 General Introduction 1
Chapter 2 Literature Survey 3
2.1 Introduction of Annealing Twins 3
2.1.1 The Growth Accidents Model 4
2.1.2 Nucleation of Twins by Stacking Faults 5
2.1.3 The Model Consisting of Partial Dislocations 13
2.1.4 The Appearance of Annealing Twin 15
2.2 Introduction of Deformation Twins 20
2.2.1 The Thompson Tetrahedron for Dissociation of Dislocations 21
2.2.2 The Model of Node-Pairs and Fault-Pairs 25
2.2.3 The Modified Models of Pole Mechanism 28
2.2.4 Theory of Twin Activated by Multiple Slip Systems 32
2.2.5 The Pole Model and Twinning Mechanism 35
2.2.6 The Factors in Deformation Twinning 36
2.3 The Calculation of Twin Density 39
2.3.1 The Methods of Calculation by Theories 40
2.3.2 The Methods of Calculation by Experiments 42
2.3.3 The Factors in Annealing Twin Density 43
Chapter 3 Experimental Techniques 47
3.1 Sample Preparation and Proceeding 47
3.2 The Optical Microstructure of α-brass 47
3.3 The Calculation of Annealing Twin Density 48
3.4 The Proceeding of EBSD 49
3.5 The Preparation of TEM Specimens 49
3.6 The Hardness Test on annealed α-brass 50
Chapter 4 Annealing Twins in α-brass 53
4.1 The Morphology of Annealing Twins 53
4.2 Observations on Ledges at Coherent Twin Boundaries 60
4.3 Annealing Twin Density Calculations 66
4.3.1 Methods of Twin Density Calculations 66
4.3.2 Results and Discussion 68
4.4 The Orientation of Annealing Twins 75
4.4.1 Kikuchi lines 75
4.4.2 Coordinate Systems 76
4.4.3 The Orientation Matrix 76
Chapter 5 Deformation Twins in α-brass 89
5.1 The Microstructure of Compressed α-brass 89
5.2 The Role of the Twin Boundary 102
5.3 Stacking Faults and Twins 111
5.4 The Hardness of Twin Related to Orientation 114
5.4.1 The Hardness Test Based on Varied Grain Orientation 114
5.4.2 The Hardness Test at Twin Boundaries with Varied Orientation 115
5.4.3 Conclusion 115
Chapter 6 General Conclusions 120
Future Work 122
Reference 124


1.A. N. Tyumentsev, N. S. Surikova, I. Y. Litovchenko, Y. P. Pinzhin, A. D. Korotaev, and O. V. Lysenko, Mechanism of deformation and crystal lattice reorientation in strain localization bands and deformation twins of the B2 phase of titanium nickelide. Acta Materialia, 2004. 52: p. 2067.
2.黃宏勝 and 林麗娟, FE-SEM/CL/EBSD分析技術簡介, in 工業材料雜誌. 2003. p. 99.
3.L. E. Murr, ed. Interfacial Phenomena in Metals and Alloys. 1975, Addison-Wesley: Mass.
4.H. Gleiter, The formation of annealing twins. Acta Metallurgica, 1969. 17: p. 1421.
5.M. A. Meyers and L. E. Murr, A model for the formation of annealing twins in FCC metals and alloys. Acta Metallurgica, 1978. 26: p. 951.
6.Diffraction Pattern. Available from: http://dmseg5.cwru.edu/Groups/Ernst/Courses/EMSE-509-F06/Pages/transparencies/EMSE-509-05-Compact.pdf.
7.S. Dash and N. Brown, An investigation of the origin and growth of annealing twins. Acta Metallurgica, 1963. 11: p. 1067
8.S. Mahajan, C. S. Pande, M. A. Imam, and B. R. Rath, Formation of Annealing Twins in FCC Crystals. Acta Metallurgica, 1997. 45: p. 2633.
9.R. E. Reed-Hill and R. Abbaschian, Physical metallurgy principles/ 3rd. ed. 1994, Boston: PWS Publishing Company.
10.C. S. Pande, M. A. Imam, and B. B. Rath, Study of annealing twins in FCC metals and alloys. Metallurgical and Materials Transactions A, 1990. 21: p. 2891.
11.The Thompson tetrahedron, in Characterisation of Radiation Damage by Transmission Electron Microscopy. 2000, Taylor & Francis.
12.H. Suzuki and C. S. Barrett, Deformation twinning in silver-gold alloys. Acta Metallurgica, 1958. 6: p. 156.
13.E. Cerreta and S. Mahajan, Formation of deformation twins in TiAl. Acta Materialia, 2001. 49: p. 3803.
14.J. A. Venables, Deformation twinning in face-centred cubic metals. Philosophical Magazine, 1961. 6: p. 379.
15.S. Mahajan and G. Y. Chin, Formation of deformation twins in f.c.c. crystals. Acta Metallurgica, 1973. 21: p. 1353.
16.A. H. Cottrell and B. A. Bilby, LX. A mechanism for the growth of deformation twins in crystals. Philosophical Magazine Series 7, 1951. 42: p. 573.
17.Q. Li, J. R. Cahoon, and N. L. Richards, On the calculation of annealing twin density. Scripta Materialia, 2006. 55: p. 1155.
18.C. S. Pande and M. A. Imam, Grain growth and twin formation in boron-doped nickel polycrystals. Materials Science and Engineering: A, 2009. 512: p. 82.
19.S. Mahajan, Deformation Twinning, in Encyclopedia of Materials: Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief: , et al., Editors. 2002, Elsevier: Oxford. p. 1.
20.S.-W. Kim, X. Li, H. Gao, and S. Kumar, In situ observations of crack arrest and bridging by nanoscale twins in copper thin films. Acta Materialia, 2012. 60: p. 2959.
21.S. Mahajan, The evolution of intrinsic-extrinsic faulting in FCC crystals. Metallurgical and Materials Transactions A, 1975. 6: p. 1877.
22.L. Lu, R. Schwaiger, Z. W. Shan, M. Dao, K. Lu, and S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 2005. 53: p. 2169.
23.V. Levkovitch, R. Sievert, and B. Svendsen, Simulation of deformation and lifetime behavior of a fcc single crystal superalloy at high temperature under low-cycle fatigue loading. International Journal of Fatigue, 2006. 28: p. 1791.
24.Y. N. Wang and J. C. Huang, Texture analysis in hexagonal materials. Materials Chemistry and Physics, 2003. 81: p. 11.
25.李欣怡, 黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究, in 材料科學與工程學研究所. 2010, 臺灣大學: 台北市. p. 202.
26.H. C. H. Carpenter and S. Tamura, The formation of twinned metallic crystals. Proceedings of the Royal Society of London. Series A, 1926. 113: p. 161.
27.J. E. Burke, The formation of annealing twins. Transactions of the American Institute of Mining; American Institute of Mining, Metallurgical, and Petroleum Engineers., 1950. 188: p. 1324.
28.R. L. F. a. J. C. Fisher, Formation of Annealing Twins During Grain Growth. J. Appl. Phys., 1951. 22: p. 1350.
29.P. Merklen, E. Furubayashi, and H. Yoshida, Formation of Twins and Stacking Faults during the Primary Recrystallization of Pure Nickel. Trans. Japan Inst. Metals, 1970. 11: p. 252.
30.G. Gindraux and W. Form, NEW CONCEPTS OF ANNEALING-TWIN FORMATION IN FACE-CENTERED CUBIC METALS. J Inst Met (London), 1973. 101: p. 85.
31.R. Viswanathan and C. Bauer, Formation of annealing twins, faceting, and grain boundary pinning in copper bicrystals. Metallurgical and Materials Transactions B, 1973. 4: p. 2645.
32.J. P. Nielsen, The origin of annealing twins. Acta Metallurgica, 1967. 15: p. 1083.
33.W. G. Burgers, ''Stimulation crystals'' and twin formation in recrystallized aluminium. Nature, 1946. 157: p. 76.
34.W. G. Burgers, Crystal growth in the solid state (recrystallization). Physica, 1949. 15: p. 92.
35.P. A. Deymier, M. Shamsuzzoha, and J. D. Weinberg, A study of grain boundary translational states in a Σ3[110]/(111) bicrystal. Acta Metallurgica et Materialia, 1991. 39: p. 1571.
36.J. W. Matthews, Formation of twins during diffusion between single-crystal films of gold and palladium. Acta Metallurgica, 1968. 16: p. 35.
37.A. Oka, S. Koyama, H. Kutami, and Y. Shiohara, Study of twin formation in NdBa2Cu3O7-δ single crystal by using high temperature polarized optical microscopy. Applied Superconductivity, 1997. 5: p. 79.
38.A. Oka, S. Koyama, and Y. Shiohara, Study of oxygen diffusion in NdBa2Cu3O7-δ single crystal by in-situ observation of twin formation. Physica C: Superconductivity, 1998. 305: p. 213.
39.H. Gleiter, The mechanism of grain boundary migration. Acta Metallurgica, 1969. 17: p. 565.
40.W. G. Burgers, J. C. Meijs, and T. J. Tiedema, Frequency of annealing twins in copper crystals grown by recrystallization. Acta Metallurgica, 1953. 1: p. 75.
41.T. Robert Dehoff, Thermodynamics in material science / Robert DeHoff.-- 2nd ed. 2006, NW: Taylor & Grancis Group, LLC.
42.L. E. Murr, Energetics of Grain-Boundary Triple Junctions and Corner-Twinned Junctions: Transmission Electron Microscope Studies. Journal of Applied Physics, 1968. 39: p. 5557.
43.K. T. Aust and J. W. Rutter, Grain Boundary Migration in High-Purity Lead and Dilute Lead-Tin Alloys Transactions of the Metallurgical Society of AIME; American Institute of Mining, Metallurgical, and Petroleum Engineers., 1959. 215: p. 820.
44.G. T. Gray Iii, Deformation twinning in Al-4.8 wt% Mg. Acta Metallurgica, 1988. 36: p. 1745.
45.Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, M. I. Baskes, F. Zhou, and E. J. Lavernia, Nucleation and growth of deformation twins in nanocrystalline aluminum. Applied Physics Letters, 2004. 85: p. 5049.
46.T. G. Zocco, R. I. Sheldon, M. F. Stevens, and H. F. Rizzo, Observations of twinning in alpha plutonium by transmission electron microscopy. Journal of Nuclear Materials, 1989. 165: p. 238.
47.J. W. Christian and S. Mahajan, Deformation twinning. Progress in Materials Science, 1995. 39: p. 1.
48.S. Mahajan, Interrelationship between slip and twinning in B.C.C. crystals. Acta Metallurgica, 1975. 23: p. 671.
49.S. Mahajan and D. F. Williams, Deformation Twinning in Metals and Alloys. International Materials Reviews, 1973. 18: p. 43.
50.M. Yoo, J. Morris, K. Ho, and S. Agnew, Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility. Metallurgical and Materials Transactions A, 2002. 33: p. 813.
51.A. Serra and D. J. Bacon, Modelling the motion of twinning dislocations in the HCP metals. Materials Science and Engineering: A, 2005. 400–401: p. 496.
52.H. R. Wenk, I. Lonardelli, and D. Williams, Texture changes in the HCP-BCC-HCP transformation of zirconium studied in situ by neutron diffraction. Acta Materialia, 2004. 52: p. 1899.
53.T. H. Blewitt, R. R. Coltman, and J. K. Redman, Low-temperature deformation of copper single crystals. Journal of Applied Physics, 1957. 28: p. 651.
54.Y. T. Zhu, J. Narayan, J. P. Hirth, S. Mahajan, X. L. Wu, and X. Z. Liao, Formation of single and multiple deformation twins in nanocrystalline FCC metals. Acta Materialia, 2009. 57: p. 3763.
55.S. Mahajan and G. Y. Chin, Comments on deformation twinning in silver- and copper-alloy crystals. Scripta Metallurgica, 1975. 9: p. 815.
56.S. B. Chakrabortty and E. A. Starke Jr, Deformation twinning of Cu3Au. Acta Metallurgica, 1975. 23: p. 63.
57.T. D. Le, I. M. Bernstein, and S. Mahajan, Effects of hydrogen on micro-twinning in a Fe

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top