跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林聖鈞
研究生(外文):Sheng-Jun Lin
論文名稱:風能與太陽能併固態氧化物電解電池 儲能複合系統研究
論文名稱(外文):Analysis of Wind Power and Solar Power with Solid Oxide Electrolysis Cell hybrid System
指導教授:曾重仁
指導教授(外文):Chuntg-Jen Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:質子傳導型固態氧化物電解電池再生能源儲能複合系統
外文關鍵詞:Proton conducting solid oxide electrolysis cellrenewable energyenergy storage hybrid system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:2
本研究探討再生能源發電與氫氣儲能之複合系統,其中再生能源考慮了風力與太陽能,並且搭配使用質子傳導型固態氧化物電解電池(pSOEC),將多餘電力轉換成氫氣儲存並供應後續使用。系統設計之元件包含:風力發電機、太陽光電、太陽能蒸發器、pSOEC、質子交換膜燃料電池、與儲氫槽;並以台灣四個離島:澎湖、金門、馬祖、與綠島之自然條件及用電資料為依據,討論改變各個系統元件規模,對每月剩餘電量、再生能源缺口電量、與氫氣量變化之影響。本研究中使用Excel與MATLAB軟體計算評估系統運行結果。
研究結果顯示,澎湖地區風力發電量佔比增加時,會使系統能源供給百分率上升,但在風力發電佔比超過50%時,能源供給百分率的增加量會趨於平緩。而金門地區因為太陽能發電較風力發電為穩定可靠,因此在太陽能發電佔比提高時,系統能源供給百分率也提高。馬祖地區全年度風力發電量較穩定,故系統能源供給百分率會隨著風力發電佔比增加而上升。綠島地區的自然條件與澎湖相似,但整體用電規模較小,故風力發電機的架設數量對系統能源供給的影響變得相當顯著。根據四座島嶼的系統評估之後,可以發現在再生能源具有穩定週期變化之地區,較有助於此複合系統架設;綠島的整體規模較小,是適合進行初期系統建置評估的地區。
This study demonstrates a hybrid energy system combine with the renewable energy and hydrogen storage systems. The system is powered by wind turbines and solar cell, and a proton conducting solid oxide electrolysis cell (p-SOEC) is used for hydrogen production from excess energy. Five components install in this hybrid system: wind turbines, solar cells, p-SOEC, PEM fuel cells, and hydrogen storage tanks. The system analysis is based on the real conditions from four offshore islands of Taiwan, including of Penghu-Makung, Kinmen, Matsu, and Green Island. Effects of the system from each component are discussed and concluded. This study is analyzed by using MATLAB and Excel.
The results show that enlarge the wind power percentage of Penghu-Makung would increase system energy supply. However, when the wind power percentage excess 50 %, incremental of the system energy supply becomes smaller. Solar power is stable in Kinmen and increasing the solar power penetration of Kinmen would enhance the system energy supply. In Matsu, wind power is stronger and more stable. Enlarge the wind power penetration of Matsu would increase the system energy supply. The natural condition of Green Island is similar to Penghu-Makung, but residential electricity of Green Island is smaller than Penghu-Makung. According to the natural conditions and residential electricity demand, it can be found that the hybrid system has advantages at the region with obviously periodical changes on climates. Green Island is suitable for preliminary system evaluation.
中文摘要 I
ABSTRACT II
目錄 IV
表目錄 VIII
圖目錄 IX
符號表 XIII
第一章 緒論 1
1.1 前言 1
1.2 電解水發展與沿革 3
1.3 固態氧化物電解電池 4
1.3.1. 固態氧化物地電解電池運作原理 4
1.3.2. 固態氧化物電解電池構造 6
1.4 文獻回顧 7
1.4.1 SOEC 材料機構與數學模型 7
1.4.2 SOEC複合系統 9
1.5 研究動機 13
第二章 理論分析 14
2.1 問題描述與假設 14
2.2 系統元件 17
2.2.1 固態氧化物電解電池 17
2.2.2 風力發電機組 19
2.2.3 太陽能發電與太陽能蒸發器 21
2.2.4 質子交換膜燃料電池 22
2.2.5 儲存氫氣壓縮器 23
2.2.6 效率定義 23
2.2.7 名詞定義 25
2.3數據收集 26
第三章 研究方法 30
3.1 固態氧化物電解電池模型假設與計算 30
3.2程式驗證 36
3.3 參數條件 39
第四章 結果與討論 41
4.0 各地區自然條件與民生用電需求分析 41
4.1質子傳導型固態氧化物電解電池性能曲線 42
4.2 風機數量改變對系統之影響 45
4.2.1 澎湖馬公風機數量改變對系統之影響 45
4.2.2 金門風機數量改變對系統之影響 50
4.2.3 馬祖風機數量改變對系統之影響 56
4.2.4 綠島風機數量改變對系統之影響 61
4.3太陽能板數量改變對於系統之影響 66
4.3.1 澎湖馬公太陽能板數量改變對於系統之影響 66
4.3.2 金門太陽能板數量改變對於系統之影響 71
4.3.3 馬祖太陽能板數量改變對於系統之影響 76
4.3.4 綠島太陽能板數量改變對於系統之影響 81
4.4 P-SOEC 數量改變對於系統之影響 86
4.4.1 澎湖馬公P-SOEC 數量改變對於系統之影響 86
4.4.2 金門P-SOEC 數量改變對於系統之影響 88
4.4.3 馬祖P-SOEC 數量改變對於系統之影響 90
4.4.4 綠島P-SOEC 數量改變對於系統之影響 92
4.5 PEMFC 數量改變對於系統之影響 93
4.5.1 澎湖馬公PEMFC數量改變對於系統之影響 93
4.5.2 金門PEMFC數量改變對於系統之影響 95
4.5.3 馬祖PEMFC數量改變對於系統之影響 96
4.5.4 綠島PEMFC數量改變對於系統之影響 97
4.6 各地區最佳化設計評估 99
第五章 結論與未來建議 101
5.1 結論 101
5.2 未來建議 102
第六章 參考文獻 103
[1] 高橋正雄, 工業電解化學. 復漢出版社, 1992.
[2] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” J. Power Sources, vol. 203, pp. 4–16, 2012.
[3] V. Menon, V. M.Janardhanan, and O. Deutschmann, “A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production,” Chem. Eng. Sci., vol. 110, pp. 83–93, 2014.
[4] D. Grondin, J. Deseure, A. Brisse, M. Zahid, and P. Ozil, “Simulation of a high temperature electrolyzer,” J. Appl. Electrochem., vol. 40, no. 5, pp. 933–941, 2010.
[5] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., vol. 47, no. 7, pp. 599–607, 2010.
[6] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Prospect of solid oxide steam electrolysis for hydrogen production,” WHEC 16, pp. 13–16, 2006.
[7] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Parametric study of solid oxide steam electrolyzer for hydrogen production,” Int. J. Hydrogen Energy, vol. 32, no. 13, pp. 2305–2313, 2007.
[8] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer,” Int. J. Hydrogen Energy, vol. 33, no. 15, pp. 4040–4047, 2008.
[9] L. Namwong,S. Authayanun,D. Saebea,Y. Patcharavorachot,and A. Arpornwichanop, “Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products,” J. Power Sources, vol. 331, pp. 515–526, 2016.
[10] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, “Syngas production via high temperature steam/CO2 co electrolysis: an economic assessment,” Energy Environ. Sci., no. 3, pp. 1382–1397, 2010.
[11] Y. ElFouih and C. Bouallou, “Recycling of carbon dioxide to produce ethanol,” Energy Procedia, vol. 37, pp. 6679–6686, 2013.
[12] G. Cinti, D. Frattini, E. Jannelli, U. Desideri, and G. Bidini, “Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant,” Appl. Energy, vol. 192, pp. 466–476, 2017.
[13] W. Zhang, B. Yu, and J. Xu, “Efficiency evaluation of high-temperature steam electrolytic systems coupled with different nuclear reactors,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12060–12068, 2012.
[14] F. Wei et al., “Evaluation on the efficiency of a solar powered solid oxide electrolysis cell plant for carbon dioxide reduction,” Int. J. Electrochem. Sci., vol. 9, no. 3, pp. 1146–1162, 2014.
[15] O. Joneydi Shariatzadeh, A. H. Refahi, S. S. Abolhassani, and M. Rahmani, “Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell,” Energy Convers. Manag., vol. 105, pp. 423–432, 2015.
[16] Anis Houaijia, M. Roeb, N. Monnerie, and C. Sattler, “Solar power tower as heat and electricity source for a solid oxide electrolyzer: a case study,” Int. J. ENERGY Res., vol. 39, pp. 1120–1130, 2012.
[17] N. Monnerie, M. Roeb, A. Houaijia, and C. Sattler, “Coupling of Wind Energy and Biogas with a High Temperature Steam Electrolyser for Hydrogen and Methane Production,” Green Sustain. Chem., vol. 4, no. 2, pp. 60–69, 2014.
[18] N. Monnerie, A. Houaijia, M. Roeb, C. Sattler, and N. Monnerie, “Methane Production via High Temperature Steam Electrolyser from Renewable Wind Energy: A German Study,” vol. 5, no. 5, pp. 70–80, 2015.
[19] M. Tolga Balta, I. Dincer, and A. Hepbasli, “Thermodynamic assessment of geothermal energy use in hydrogen production,” Int. J. Hydrogen Energy, vol. 34, no. 7, pp. 2925–2939, 2009.
[20] J. Sigurvinsson et al., “Heat transfer problems for the production of hydrogen from geothermal energy,” Energy Convers. Manag., vol. 47, no. 20, pp. 3543–3551, 2006.
[21] J. Sigurvinsson,C.Mansilla, P.Lovera,and F.Werkoff, “Can high temperature steam electrolysis function with geothermal heat?,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1174–1182, 2007.
[22] T. Kobayashi, K. Abe, Y. Ukyo, and H. Iwahara, “Reduction of nitrogen oxide by steam electrolysis cell using a protonic conductor SrZr Yb O and the catalyst Sr /Al O,” Solid State Ionics, vol. 134, pp. 241–247, 2000.
[23] D. S.Yun, J. H. Joo, J. H. Yu, H. C. Yoon, J. N. Kim, and C. Y. Yoo, “Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst,” J. Power Sources, vol. 284, pp. 245–251, 2015.
[24] G. Wu, K. Xie, Y. Wu, W. Yao, and J. Zhou, “Electrochemical conversion of H2O/CO2 to fuel in a proton-conducting solid oxide electrolyser,” J. Power Sources, vol. 232, pp. 187–192, 2013.
[25] “http://www.thewindpower.net/turbine_en_55_ge-energy_1.5se.php.” .
[26] “https://en.wind-turbine-models.com/turbines/68-enercon-e-40-6.44.” .
[27] T.Yamaguchi, Y.Ichihashi, T.Mishima, N.Matsubara, and T.Yamanishi, “Achievement of More Than 25 % Conversion Heterojunction Solar Cell,” vol. 4, no. 6, pp. 1433–1435, 2014.
[28] 蔡秉蒼, “應用金屬發泡材為流道之質子交換膜燃料電池之研究,” 國立中央大學, 2012.
[29] L. Mingyi, Y. Bo, X. Jingming, and C. Jing, “Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production,” J. Power Sources, vol. 177, no. 2, pp. 493–499, 2008.
[30] P. A. Stuart, T. Unno, J. A. Kilner, and S. J. Skinner, “Solid oxide proton conducting steam electrolysers,” Solid State Ionics, vol. 179, no. 21–26, pp. 1120–1124, 2008.
[31] H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, “Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production,” Solid State Ionics, vol. 3–4, no. C, pp. 359–363, 1981.
[32] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3-δ (Ln ¼ Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 789–793, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top