跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:花伴柱
研究生(外文):Ban-Chu Hwa
論文名稱:資料探勘技術在藥品行銷應用之研究-以國內某製藥公司為例
論文名稱(外文):Research in pharmaceuticals marketing with Data mining technique-A case study of a domestic Pharmaceutical company
指導教授:阮金聲阮金聲引用關係
指導教授(外文):Jin-sheng Roan
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:購藥特徵變數資料探勘群聚演算法關聯演算法
外文關鍵詞:active fieldsupplementary fielddata miningcluster algorithmassociation algorithm
相關次數:
  • 被引用被引用:12
  • 點閱點閱:693
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
利用 “最近3個月購藥次數”,”最近12個月購藥次數”,”購藥金額”,”購藥效益”, “購藥品項數”,”推銷費用” 6項數字型態的欄位,為主要特徵變數,6項類別型態的欄位 “行政區”,”科別”,”訂貨方式”,”區組別”,”教育程度”,”銷貨方式”為輔助變數,將客戶依毛利,淨利貢獻度,利用資料探勘群聚演算法,區分為7群主要群組。針對每個群組的客戶,依其購藥的品項,利用關聯演算法,找出客戶購藥的關聯性,作為組合銷售的參考。搭配企劃人員領域知識的解釋與分析,針對型態相似的群聚,擬定適當的銷售策略,藉由實際銷售.的實施與驗證,得知適當的客戶分群與目標行銷,可以增加購藥金額,增加購藥效益,減少推銷費用,進而提高企業的獲利。
由資料分析結果可知,屬於獲利高,忠誠度高的客戶大約佔全體客戶的30%,其它60 %大部分的客戶 , 還是屬於低貢獻度的一群。雖然每一顧客對公司都是重要的,不能輕言放棄,但在考慮行銷資源有限的情況下,則不得不有所取捨,除了對所有顧客做最基本的行銷努力之外,再針對不同群聚的特性,予以不同的行銷策略及投注不同的行銷資源,才能達到最大的報酬
Using 6 numeric type of active fields “transaction frequency in 3 months”, “transaction frequency in 12 months” , “transaction amount” , “transaction profit” , “Articles of transaction”, “Sale promotion expense” and 6 categorical type of supplementary fields “zip code”, “medical specialties” , “type of order” , “type of channel” , “education level” , “type of sale” to cluster the customs to be 7 groups with data mining clustering technique. For each group , using the articles buying , find out the relation of purchasing medicine with data mining association algorithm , as a reference for cross-selling. With the explanation and analysis of specialist , draw up appropriate market strategy for each similar group. After the strategy implementation and verification, got the conclusion that appropriate market segmentation and target marketing will raise the sale amount , sale profit and reduce the promotion expense , finally raise the net profit for a enterprise.
From the result of data mining , the groups with higher contribution and honesty have a ratio of 30 % to all the customers , while the group with lower contribution have the ratio up to 60 %. Each custom is important for enterprise , but under the circumstance of limited resources , It must has some choices. Except the basic market effort for each custom , draw up different market strategy for different cluster will achieve the goal of maximum profit.
目錄 i
表目錄 iii
圖目錄 iv
第一章、 緒論
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究步驟 3
第四節 預期成果與貢獻 5
第五節 論文架構 6
第二章、 文獻探討
第一節 製藥產業之現況 7
第二節 目標行銷 11
第三節 資料倉儲 14
第四節 線上分析處理 16
第五節 資料探勘 19
第六節 資料探勘工具 22
第三章、 研究方法
第一節 研究架構 28
第二節 資料模型 29
第三節 資料來源與前置處理 31
第四節 資料探勘實作 35
第五節 探勘結果解釋與行動部署 38
第六節 線上分析處理結果收集 40
第四章、 研究實作
第一節 資料模型定義 42
第二節 前置處理實作 45
第三節 群聚分析實作 47
第四節 關聯分析實作 58
第五節 探勘結果彙總 62
第六節 探勘結果分析解釋,銷售策略與驗證 65
第五章、結論與建議
第一節 資料分析總結 70
第二節 製藥業資料探勘導入程序 72
第三節 未來研究方向 75
參考文獻 77
附錄A 84
1. Agrawal, R.,.R. Srikant: "Fast Algorithms for Mining Association Rules," Proc. of the 20th Int''''l Conference on Very Large Databases, Santiago, Chile, Sept. 1994. Expanded version available as IBM Research Report RJ9839, June 1994.
2. Berger, PaulD.and Nada I.Nasr , “Customer Lifetime Value: Marketing Models and Application,” Journal of Interactive Marketing,1998, Vol.12, pp.17-30.
3. Berry, M J.A. and G.Linoff, Data Mining Techniques: For Marketing Sale and Customer Support, John Wiley & Sons, Inc., Canda, 1997.
4. Bhandari,I.,E.Colet,J.Parker, Z. Pines,R. Pratap and K. Ramanujam, “Brief Application.De-scription .Advanced.Scount:Data Mining and KnowledgeDiscovery.in.NBA.Data”,Data.Mining.and.Knowledge.Discovery,1997,pp.121-125.
5. Bort, Julie. "Data mining''''s midas touch," InfoWorld, Vol. 18, No. 18 (April 1996), pp79- 83.
6. Brachman, R. J. ,T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro, and E. Simoudis, “Mining Business Databases,” Communications of ACM 39, November 1996, pp.44
7. Cabena, P., P. O. Hadjinian, R. Stadler, DR. J. Verhees, and A. Zanasi ,Discovering Data Mining from Concept to Implementation , Prentice Hall,pp12, 1997
8. Chaudhuri, S. and U. Dayal, “An Overview of Data Warehousing and OLAP Technology”, ACM SIGMOD RECORD, Vol. 26, No.1, pp.65-74, 1997.
9. Chen, M.-S., J .Han and P.S. Yu, “Data Mining: An Overview from a Database exspective ”, IEEE Transcations on Knowledge and Data Engineering, Vol.8,No. 6,1996,pp.866-883
10. Chou, D. C. and Chou, A. Y. “A Manager''''s Guide to Data Mining,” InformationSystems Management, Fall 1999, pp. 33-41.
11. Curt, H. , "The Devil''''s in the Detail: Techniques, Tools, and Application for Database mining and Knowledge Discovery-Part 1," Intelligent Software Strategies, vol. 6, no.9,1995, pp.1-15.
12. Day,George S.&Robin Wensley,”Assessing advantage:A Framework for Diagonsing Competitive Superiority ”, Journal of Marketing,Vol.52,April,pp.1-20,1988.
13. Dubinsky, Alan J. and T. N. Ingram , “ A Portfolio Approach to Account Profitability,” Industrial Marketing Management, Vol.13, pp.33-41, 1984
14. Foley, John. "Squeezing more value from data," Information week, No. 609(December 1996), pp.44.
15. Frawley, W. J., Paitetsky-Shapiro G., Matheus, C. J.. Knowledge Discovery in Database :An Overview, Knowledge Discovery in Database, California, AAAI/MIT press, pp1-30, 1991.
16. Goil, S., Choudhary, A., “A parallel scalable infrastructure for OLAP and data mining”, Database Engineering and Applications, IDEAS ''''99. International Symposium Proceedings, pp. 178-186, 1999.
17. Goodman, John, “Leveraging the Customer Database to your CompetitiveAdvantage,” Direct Marketing, Dec 1992, pp.26-27.
18. Greenfeld, Norton. "Data mining," UNIX Review, Vol. 14, No. 5 (May 1996), pp 9-14.
19. Han, J. "Characteristic Rules , "DB Miner , to appear in W. K loesgen and J. Zytkow (eds.), "Handbook of Data Mining and Knowledge Discovery, Oxford University Press, 1999.
20. IBM Software Intelligent Miner Family, http://www.software.ibm.com/
21. Imielinski, Tomasz, and Mannila, Heikki. "A database perspective on knowledge discovery," Communications of the ACM, Vol. 39, No. 11 (November 1996), 58- 64.
22. Inmmon, W. H. “The Data Warehouse and Data Mining, ”Communications of the ACM 39, November 1996, pp.49-50.
23. Jain, A.K. and Maojianchang, Mohiuddin, " Artifical neural network: a tutorial computer, Vol.. 293, pp.31-44, 1996
24. Kahan, Ron., “Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initiatives,” Journal of Consumer Marketing, Vol.15, 1998, pp.491-493.
25. Kimball , R. ,”The Data Warehouse Toolkit”, John Wiley & Sons, New York, 1996
26. Kotler, P.and G.Armstrong, Principles of Marketing, 7th ed., Englewood Cliffs, NJ: Prentice-Hill , 1996.
27. Kristin, R. N., and I. P. Matkovsky , “Using Data Mining Techniques for Fraud Detection.”, SAS Institute Inc. and Federal Data Corporation. , 1999
28. McCarthy, E. J.,. Basic Marketing: A Managerial Approach, Haome wood, Illinois:Richard D. Irwin Inc, 1993, pp. 226.
29. Mena, Jesus. Data Mining your Website,MA: Digital Press, 1999.
30. Mulhern, Francis J., “Customer Profitability Analysis: Measurement, Concentration, and Research Directions,” Journal of Interactive Marketing, Vol.13, pp.25-40, 1999.
31. Newing, Rod. "Data mining," Management Accounting-London, Vol. 74, No.9(October 1996), 34-36.
32. Nilson, McCord Marilyn and Illingworth, T.W. , Apractical Guide to Neural Nets, Reading, Addison Wesley Publishing Co., 1991
33. Peltier, J. W. and J. A. Schribrowsky (1997),“The Use of Need-based Segmentation For Developing Segment-specific Direct Marketing Strategies,”Journal of Direct Marketing, 11(4), 1997, pp.53-62.
34. Rigdon, Edward E. "Data mining gains new respectability," Marketing News, Vol.31, No. 1 (January 1997), pp 8.
35. Schijns, Jos M. C. and Gaby J. Schroder, “Segment Selection by Relationship Strength,” Journal of Direct Marketing, Vol.10, 1996,pp.69-79.
36. Schultz, D. E. and H. F. Schultz , “Transitioning Marketing communications Into the Twenty-first Century,” Journal of Marketing Communications, 4, pp.9-26,1998
37. Smith, W. R. " Product differentiation and market segmentation as alternative marketing strategies," Journal of Marketing, vol. 21, July 1956, pp. 3-8.
38. Surajit Chaudhuri, Umeshwar Dayal: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26(1): 65-74 (1997)
39. Wayland, R. and Cole, P. Customer Connections: New Strategies for Growth,Harvard Business School Press, 1997.
40. Wind.Y.,”Issues and Advances in Segmentation Research”,journal of Marketing Research,Vol. 15,pp217-337,1978.
41. Wyner, G. A. (1996),“Customer Profitability: Linking Behavior to Economics,”Marketing Research, 8(2), pp.36-38.
1. IBM 零售業資料探勘紅皮書,2000
2. 王慶堯,2000,利用準大項目集之漸進式資料挖掘,私立義守大學碩士論文。
3. 方世榮譯,Philip Kotler 著,行銷管理學-分析、計劃、執行、與控制,第二版,東華書局,台北,1996。
4. 古政元,嚴紀中,2000,”資料倉儲之面面觀”,RUN! PC,81期,頁288-297,10月。
5. 李昆正,1999,資料庫行銷:以組合分析理論和行銷資訊作為顧客獲利性分析之實證研究,國立中正大學企管所碩士論文。
6. 吳文宗,2000,”資料倉儲和ERP2的親密關係”,資訊與電腦,224期,頁44-49,7月。
7. 林宏諭,2001,SQL 2000 之决策分析OLAP建置與應用,初版,博碩文化,台北,2月。
8. 林建廷,2000,類神經網路在無線通訊市場消費區隔與預測,私立元智大學資管系管理研究所碩士論文。
9. 林裕仁,1999,資料倉儲應用實例之建置與系統效能分析之研究,國立屏東科技大學碩士論文。
10. 林常平,1991,再談類神經網路,自動化科技。
11. 周雅姍,1999,”OLAP SERVICE 介紹(上)-Microsoft SQL Sever7.0”,決策論壇,第17期,6月。
12. 周雅姍,1999,”OLAP SERVICE 介紹(下)-Microsoft SQL Sever7.0”,決策論壇,第19期,12月。
13. 高薪發,2000 “製藥業的經營績效研究” EMBA 論文
14. 邱承凡,2000,資料倉儲實體化視域選取之研究-以資料方體之建置為例,私立元智大學碩士論文。
15. 郭興恩,1999,會員消費資料分析與探勘,國立雲林科技大學碩士論文。
16. 陳文華,2001,”運用資料倉儲技術於顧客關係管理”,能力雜誌, 頁132-138,1月。
17. 陳文華,1999,”架構資料倉儲的注意事項”,資訊與電腦,224期,頁94-99。
18. 陳智宗,1999,以資料挖礦法挖掘多屬性序列式資料規則之研究,國立中央大學碩士論文。
19. 張勳騰,1999,資料探採在通信資料庫上目標行銷的應用,國立中山大學碩士論文。
20. 張德民,1999,“資料探勘:從搜尋金星火山到偵察考試作弊”,資訊傳真,336期,1999年3月,頁10。
21. 張維捷,1999,以資料挖礦法則預測網頁更新規則之研究,國立中央大學碩士論文
22. 張瑋倫,2000,應用資料挖掘學習方法探討顧客關係管理問題,私立天主教輔仁大學資訊管理學系碩士論文。
23. 黃申在,林裕仁,”資料倉儲應用實例之建置”,第五屆資訊管理研究暨實務研討會-資訊傳播與管理, 2000,頁263-270。
24. 黃彥文,1999,資料探勘之應用-會員消費特徵之挖掘,國立屏東科技大學資管系碩士論文。
25. 許中川、洪鋕鋒,“資料庫知識發掘前置處理與欄位拆解”,第三届國際資訊管理研究暨實務研討會論文集,1997,頁362-369
26. 許中川、郭興恩,”會員消費特徵及產品銷售特徵分析”, 第四屆國際資訊管理研究暨實務研討會論文集,1998b,頁.593-600。
27. 許長田,策略性市場行銷學,1997,生智文化。
28. 彭文正,2001,資料採礦-顧客關係管理暨電子行銷之應用,初版,維科出版社,臺北,1月。
29. 葉怡成,1992,類神經網路模式應用與實作,儒林書局。
30. 曾瑤英 主編,「前進藥局--藥局的經營管理與商品行銷」,傳璽行銷傳播公司出
31. 蔡永恒,2000,應用資料挖掘技術研究銀行顧客消費行為,私立靜宜大學碩士論文。
32. 趙婉伶,1999,”資料倉儲挖掘商業契機”,流通世界雜志,105期,頁72-76。
33. 劉慧瑜,1999,資料提煉技術在虛擬商店之應用,國立中興大學應數系碩士論文。
34. 劉家燕,1997,交易間關聯法則的探勘與資料探勘問題的分類之研究,國立清華大學碩士論文。
35. 謝邦昌、葉瑞鈴,2000,”統計在資料掘取之應用”,主計月報,530 期,頁67-84。
36. 藍中賢,2000, 結合模糊集合理論與貝氏分類法之資料探勘技術-應用於健保局醫療費用審查作業,元智大學資管系管理研究所碩士論文。
37. 蕭凱文,薛志達,李正輝,”SQL Server 7.0 OLAP Server 設計與實務應用”,華彩軟體,1999.12, 頁83-85。
38. 蕭凱文,薛志達,李正輝, 2000,SQL Server 7.0 資料倉儲整合應用,華彩軟體。
39. 蕭正南,1998,資料探勘應用於股市股價趨勢之研究,私立輔仁大學碩士論文。
40. 蘇木春、張孝德,1997,”機器學習類神經網路、模糊系統以及基因演算法則”,全華科技,頁1-25。
41. 樓玉玲,1998,以資料發掘技術分析政大通識課程,國立政治大學碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top