跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯瑋羚
研究生(外文):Wei-Ling Kho
論文名稱:混合型益生菌發酵飼料製造及對肉雞之影響
論文名稱(外文):Fermented feed production probiotic mixture effect
指導教授:陳國隆陳國隆引用關係謝佳雯謝佳雯引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:動物科學系研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:肉雞益生菌發酵枯草桿菌酵母菌乳酸菌
相關次數:
  • 被引用被引用:12
  • 點閱點閱:4382
  • 評分評分:
  • 下載下載:469
  • 收藏至我的研究室書目清單書目收藏:4
本研究目的有三:第一部份,擬利用第一階段以蛋白質分解能力較強枯草桿菌(Bacillus subtilis natto, N21)將飼料分解之後,第二階段再以產酸能力較強的酵母菌(Saccharomyces cerevisiae, Y10) or或乳酸桿菌(Lactobacillus sporogens, L12)作為發酵菌株,並探討混合型發酵飼料製作之最適合條件及發酵飼料組成之變化。第二部份,評估以枯草桿菌+酵母菌發酵飼料對肉雞生長性能之影響,並探討其影響生長性能之原因及機制。第三部份,探討以枯草桿菌+乳酸桿菌發酵飼料對肉雞生長性能之影響,並探討其影響生長性能之原因及機制。第一部份:試驗一,依益生菌之生長曲線製出菌粉。N21於37℃好氧環境下培養8小時後,其菌數(6.1×108 CFU/mL)為最佳;Y10於28℃厭氧環境下培養24小時後,菌數(1.5×108 CFU/mL)為最佳;L12於28℃厭氧環境下培養8小時後,菌數(1.7×108 CFU/mL)為最佳。依照N21、Y10及L12之生長曲線製出109 CFU/g菌粉。試驗二:將飼料以不同水分含量進行發酵,以探討飼料發酵之最適水分含量。結果顯示,第一階段發酵外加10%水分,第二階段外加13%水分獲得最佳菌數及pH值。試驗三:依試驗二之結果進行發酵飼料之製作,並分析飼料組成,以了解發酵對飼料成份變化之影響。結果顯示,N21+L12發酵飼料可降低66 kDa小分子蛋白質(P<0.05),而發酵飼料可明顯增加約50 kDa之蛋白質比例(P<0.05),其中以N21+L12發酵飼料組顯著高於N21+Y10 (P<0.05),對照組顯著最低(P<0.05)。第二部份:探討以N21+Y10發酵飼料,對肉雞生長、屠體性狀之影響,並藉由消化道內容物pH值、腸道中之菌相、腸道酵素活性、腸道組織學及雞隻營養分代謝實驗,以瞭解其促進生長機制,最後再由單一菌種發酵及添加與發酵飼料相同菌數之菌粉,以證明N21+Y10發酵飼料之效用是否由益生菌或發酵所引起。試驗一:以144隻0日齡肉雞,逢機分置於對照組、加水組(對照組+23%水,與發酵飼料組含相同水份)及N21+Y10發酵飼料組(飼糧添加0.1% N21菌粉(109 CFU/g)外加10%水份發酵2天後,再添加0.1% Y10菌粉(109 CFU/g)及13%水份發酵3天),每處理組4重複,每重複12隻。N21+Y10發酵飼料可提高21及39日齡體重,及其增重及21-39、0-39日齡採食量(P<0.05),而加水組不僅無改善生長性能之效果,且於21-39及0-39日齡時體重及其增重及採食量均顯著較差(P<0.05)。屠體性狀方面,發酵飼料組可降低21日齡相對肝臟重及增加39日齡相對腺胃&砂囊重(P<0.05)。對消化道pH值,在21及39日齡時均無差異(P>0.05)。對十二指腸中乳酸桿菌菌群(lactobacillus)及大腸桿菌狀組族群(coliform)菌數均無顯著差異(P>0.05)。腸道中內容物蛋白酶、脂肪酶及澱粉酶活性及其組織學性狀並無差異(P>0.05)。試驗二:以12隻21日齡肉雞,分置於對照組與N21+Y10發酵飼料組進行代謝試驗。結果發現,N21+Y10發酵飼料可較對照組顯著增加總能之代謝率(P<0.05)。試驗三:以216隻0日齡雄肉雞,逢機分置於對照組、Y10發酵飼料組(飼糧添加0.1% Y10菌粉(109 CFU/g)外加23%水份,發酵3天)、N21+Y10發酵飼料組(飼糧添加0.1% N21菌粉(109 CFU/g)外加10%水份發酵2天後,再添加0.1% Y10菌粉(109 CFU/g)及13%水份並發酵3天)、N21菌粉組(飼糧添加0.1% N21菌粉(使每g飼料達到106 CFU)、Y10菌粉組(飼糧添加0.1% Y10菌粉(使每g飼料達到108 CFU) 及N21+Y10菌粉組(飼糧添加0.1% N21菌粉,使每g飼料達到106 CFU及0.1% Y10菌粉,使每g飼料達到108 CFU),每處理組3重複,每重複12隻。N21+Y10發酵飼料在21、39日齡體重及各期間增重均顯著高於對照組(P<0.05),但飼料效率則沒有影響(P>0.05),而Y10發酵飼料組及添加各種菌粉組與對照組比較均無顯著差異(P>0.05)。N21+Y10發酵飼料可顯著提高肉雞生長性能,並非由於外加23%水份、益生菌或單獨益生菌發酵所引起,必須由N21+Y10二階段發酵之後才會達到顯著效果。第三部份:探討以N21+L12發酵飼料,對肉雞生長、屠體性狀之影響,並藉由消化道內容物pH值、腸道中之菌相、腸道酵素活性、腸道組織學及雞隻營養分代謝實驗,以瞭解其促進生長機制,最後再由單一菌種發酵及添加與發酵飼料相同菌數之菌粉,以證明N21+L12發酵飼料之效用是由益生菌或發酵所引起。試驗一:以96隻0日齡肉雞,逢機分置於對照組及N21+L12發酵飼料組(飼料添加0.1% N21菌粉(109CFU/g)外加10%水份發酵2天後,再添加0.1% L12菌粉(109CFU/g)及13%水份發酵3天),每處理4重複,每重複12隻。N21+L12發酵飼料可提高21及39日齡體重及其增重,增加21-39、0-39日齡採食量(P<0.05)。N21+L12發酵飼料降低21日齡相對肝臟重(P<0.05)、增加39日齡相對腺胃&砂囊重 (P<0.05)及增加十二指腸腺窩深度及肌肉層厚度(P<0.05)。對消化道中pH值及十二指腸及盲腸中乳酸桿菌群及大腸桿菌狀組族群,均無顯著差異(P>0.05)。對小腸中蛋白酶、澱粉酶及脂肪酶活性無顯著差異 (P>0.05)。試驗二:以12隻21日齡肉雞,分置於對照組與N21+L12發酵飼料組進行代謝試驗。結果發現, N21+L12發酵飼料可較對照組顯著增加粗蛋白質之代謝率(P<0.05)。試驗三:以180隻0日齡雄肉雞,逢機分置於對照組、L12發酵飼料組(飼糧添加0.1% L12菌粉(109 CFU/g)外加23%水份,發酵3天)、N21+L12發酵飼料組(飼糧添加0.1% N21菌粉(109 CFU/g)外加10%水份發酵2天後,再添加0.1% L12菌粉(109 CFU/g)及13%水份發酵3天)、L12菌粉組(飼糧添加0.1% L12菌粉(1011 CFU/g))及N21+L12菌粉組(飼糧添加0.1% N21菌粉(109 CFU/g)及0.1% L12菌粉(1011 CFU/g)),每處理組3重複,每重複12隻。餵飼N21+L12及L12發酵飼料雞隻體重及增重於各期間均顯著高於對照組(P<0.05),而添加各種菌粉組與對照組比較生長性能均無差異(P>0.05)。N21+L12發酵飼料可顯著提高肉雞生長性能,必須由N21+L12二階段發酵之後才會達到顯著效果。
This study was divided into three parts. The purpose of part 1 was to investigate the effects of Bacillus subtilis natto (N21) with higher proteolytic capacity supplemented in the first fermentation stage. Saccharomyces cerevisiae (Y10) or Lactobacillus sporogenes (L12) with higher acidic capacity were used in the second fermentation stage. Suitable fermentation stage conditions were found to realize the correct fermented feed composition. Part 2 investigated the effects of N21+Y10 fermented feed on the growth performance of broiler chickens and identified the growth performance mechanism. Part 3 investigated the effects of N21+L12 fermented feed on the growth performance of broiler chickens and identified the growth performance mechanism. Part 1 was subdivided into three trials. Trail 1 investigated the probiotic growth curve. N21 with 37℃ was cultured in an aerobic environment for 8hr with the peak at 6.1×108 CFU/mL. Y10 with 28℃ was cultured for 24h in an anaerobic environment with the peak at 1.5×108 CFU/mL. L12 with 28℃ was cultured for 8h in an anaerobic environment with the peak at 1.7×108 CFU/mL. According to the growth curve of N21, Y10 and L12 to make probiotics powder content 109 CFU/g. Trial 2 investigated the effects of different moisture content on the feed fermentation. The results showed that the first stage added 10% water and the second stage added 13% water to achieve the peak CFU and pH values. According to the results from Trial 2, the feed composition was analyzed in Trial 3 to realize the fermented feed composition effect. The results showed that N21+L12 fermented feed exhibited decreased 66 kDa protein content than the control (P<0.05). The fermented feed showed increased 50 kDa protein content over the control (P<0.05). Part 2 investigated the effect of N21+Y10 fermented feed on the growth performance and carcass traits of broiler chickens. The pH value of the digestive tract content, intestinal tract bacteria population, intestinal tract content enzyme activity, mucosa histology and nutrient availability of the chicken were investigated to realize the promotional growth mechanism. A single strain of fermented and supplementary fermented feed probiotic powder was used to demonstrate if the efficacy of N21+Y10 fermented feed was due to the probiotics or fermentation. Trial 1 investigated one hundred and forty four 0-day-old broiler chicks, assigned into control, control added water (control with 23% water and the moisture was the same with fermented feed) and N21+Y10 fermented feed (diet supplementation 0.1% N21 powder (109 CFU/g) and added 10% water to ferment two days, and then supplementation 0.1% Y10 powder (109 CFU/g) and added 13% water to ferment three days) with four replicates. N21+Y10 fermented feed increased body weight and body weight gain at 21 and 39-day-old, and feed intake over the 21-39 and 0-39-day-old trial periods (P<0.05). However, control added water neither improved growth performance nor decreased body weight, weight gain and feed intake at 21-39 and 0-39-day-old (P<0.05). In carcass traits, N21+Y10 fermented feed decreased relative liver weight at 21-day-old but increased relative preventriculus & gizzard weight at 39-day-old (P<0.05). There were no significant differences in digestive tract content pH value. Lactobacillus-like and coliform group populations, intestinal tract enzyme activity in 21 and 39-day-olds, and mucosa histology in 21-day-old (P>0.05) chickens. In Trial 2, twelve 21-day-old broiler chickens were assigned into control and N21+Y10 fermented feed for a nutrient availability trial. The results showed that N21+Y10 fermented feed increased gross energy of availability (P<0.05). In Trail 3, two hundred and sixteen 0-day-old male broiler chicks were assigned into control, Y10 fermented feed (diet supplementation 0.1% Y10 powder (109 CFU/g) and added 23% water to ferment three days), N21+Y10 fermented feed (diet supplementation 0.1% N21 powder (109 CFU/g) and added 10% water to ferment two days, and then supplementation 0.1% Y10 powder (109 CFU/g) and added 13% water to ferment three days), N21 powder (diet supplementation 0.1% N21 powder (106 CFU/ g feed)), Y10 powder (diet supplementation 0.1% Y10 powder (108 CFU/ g feed)) and N21+Y10 powder (diet supplementation 0.1% N21 powder (106 CFU/ g feed) + Y10 powder (108 CFU/ g feed)) with three replicates. N21+Y10 fermented feed chickens had higher body weight at 21 and 39-day-old and body weight gain in each period compared with the control (P<0.05). However, there was no difference in feed efficiency (P>0.05). Y10 fermented feed and diet supplement powder had no difference (P>0.05). N21+Y10 fermented feed significantly increased growth performance, not due to added 23% water, probiotics or single strain fermentation. Instead N21+Y10 fermented feed in two stages significantly achieved efficiency. Part 3 investigated the effects of N21+L12 fermented feed on the growth performance and carcass traits in broilers. Digestive tract content pH, intestinal tract bacterial population, the intestinal tract enzyme activity, mucosa histology and nutrient availability of chicken values were investigated to identify the promotional growth mechanism. A single strain fermentation and supplementation with the same CFU of fermented feed and probiotic powder to demonstrate if the efficacy of N21+L12 fermented feed was due to probiotics or fermentation. In Trial 1 ninety-six 0-day-old broiler chicks were assigned into control, N21+L12 fermented feed (diet supplementation 0.1% N21 powder (109 CFU/g) and added 10% water to ferment two days, and then supplementation 0.1% L12 powder (109 CFU/g) and added 13% water to ferment three days) with four replicates. N21+L12 fermented feed increased body weight and body weight gain at 21 and 39-day-old and feed intake at 21-39 and 0-39-day-old (P<0.05). However, there was no difference in feed efficiency (P>0.05). In carcass traits, N21+L12 fermented feed decreased relative liver weight at 21-day-old (P<0.05) and increased relative preventriculus & gizzard weight at 39-day-old (P<0.05). There were no significant differences in digestive tract content pH value at 21 and 39-day-old (P<0.05). N21+L12 fermented feed was increased duodemun content amylase activity (P<0.05), but decreased ileum lipase activity (P<0.05). In mucosa histology, it increased the crypt depth and muscle layer thickness (P<0.05). In Trial 2, twelve 21-day-old broiler chickens were assigned into control and N21+L12 fermented feed for nutrient availability trial. The results showed that N21+L12 fermented feed increased gross energy of availability as compared with control (P<0.05). In trial 3, two hundred and sixteen 0-day-old male broiler chicks were assigned into control, L12 fermented feed (diet supplementation 0.1% L12 powder (109 CFU/g) and added 23% water to ferment three days), N21+L12 fermented feed (diet supplementation 0.1% N21 powder (109 CFU/g) and added 10% water to ferment two days, and then supplementation 0.1% L12 powder (109 CFU/g) and added 13% water to ferment three days), L12 powder (diet supplementation 0.1% L12 powder (108 CFU/g feed)) and N21+L12 powder (diet supplementation 0.1% N21 powder (106 CFU/g feed) + L12 powder (108 CFU/g feed)) with three replicates. N21+L12 and L12 fermented feed had higher body weight and body weight gain in each period than the control (P<0.05). However, there were no differences between probiotic powder and control. Therefore, N21+L12 fermented feed must go through two fermentation stages before it can increase growth performance in broilers.
目 錄
頁次
Ⅰ. 中文摘要…………………………………………………….………1
Ⅱ. 前言………………………………………………………….………6
Ⅲ. 文獻檢討……………………………………………………….……8
一、益生菌………………………….………………………….………8
(一) 定義………………………………………………….…………8
(二) 種類……………………………….…………………….……...9
(三) 條件…………………………………….……………………..15
(四) 功效&特性……………………………….…………………...17
二、益生菌對家禽之影響…………………………….……………..23
(一)益生菌對肉雞生長性狀之影響………………….……………..23
(二)益生菌對蛋雞生產性狀之影響………………….…………..…29
(三)益生菌對消化道酵素之影響……………………….…………..32
 (四)益生菌對降低膽固醇之影響……………….………………..…32
三、發酵及發酵飼料………………………………….…………...…33
(一) 發酵………………………………………………….…………33
1. 定義…………………………………………………….……33
2. 模式…………………………………………………….……34
(二) 發酵飼料………………………………………….……………35
1. 定義………………………………………………….………35
2. 模式………………………………………………….………35
3. 發酵產物對動物之影響…………………………….………36
四、雞隻消化道生理………………….………………………..…….38
(一) 消化道微生物菌相………………………………….…………38
(二) 消化道絨毛型態………………………………….……………41
Ⅳ. 試驗部份…………..………………………………………..…..….42
 第一部份:混合型發酵飼料之製作
前言……………………………………………………42
       材料與方法……………………………………………43
       結果與討論……………………………………………53
 第二部份:益生菌Bacillus subtilis natto 及Saccharomyces cerevisiae發酵飼料對肉雞生長性狀之影響
前言……………………………………………………70
       材料與方法……………………………………………71
       結果與討論……………………………………………78
 第三部份:益生菌Bacillus subtilis natto 及Lactobacillus sporogenes發酵飼料對肉雞生長性狀之影響
前言…………………………………………………....97
       材料與方法……………………………………………98
       結果與討論…………………………………………..100
Ⅴ. 結論….……………………………………………………………117
Ⅵ. 參考文獻..……………….……………………………………..…118
Ⅶ. 英文摘要..……………….…………………..………………...….128

圖 次
圖1-1 Bacillus subtilis N21菌株之生長曲線…………………………61
圖1-2 Saccharomyces cerevisiae Y10菌株之生長曲線圖……………62
圖1-3 Lactobacillus sporogenes L12菌株之生長曲線………………...63
圖1-4 發酵飼料中蛋白質電泳圖……………………………………..68


表 次
表1 目前使用的益生菌菌株…………………….…………….....11-12
表2 美國、中國符合益生菌安全的微生物種類…………………13-14
表3 良好益生菌菌種應具備之條件…………………………………16
表4 乳酸菌基本特性…………………………………………………19
表5 添加單一益生菌對肉雞生長性狀之影響………………………25
表6 添加混合型益生菌對肉雞生長性狀之影響………………..27-28
表7 添加不同益生菌粉對蛋雞生長性狀之影響……………………31
表8 家禽消化道不同部位的微生物菌相…………………………....40
表1-1基礎飼糧組成…………………………………………………...60
表1-2 不同水分含量對第一階段發酵之影響………………………..64
表1-3 不同水分含量對第二階段發酵飼料之影響…………………..65
表1-4發酵飼料對pH值、菌數及風味之影響之影響………………..66
表1-5 發酵飼料之一般組成分析………………………..……………67
表1-6 混合型發酵飼料對蛋白質含量之影響………………………..69
表2-1 基礎飼糧組成…………………………………......................... 88
表2-2 N21+Y10發酵飼料對肉雞生長性狀之影響(試驗一) ...........…89
表2-3 N21+Y10發酵飼料對肉雞屠體性狀之影響(試驗一) ………...90
表2-4 N21+Y10發酵飼料對肉雞消化道pH值之影響(試驗一) .........91
表2-5 N21+Y10發酵飼料對肉雞腸道乳酸桿菌及大腸桿菌狀族群數之影響(試驗一) ……………………….............................................92
表2-6 N21+Y10發酵飼料對肉雞腸道酵素活性之影響(試驗一) ..... 93
表2-7 N21+Y10發酵飼料對21日齡肉雞腸道組織學性狀之影響
(試驗一) ………………………..........................................................94
表2-8 N21+Y10發酵飼料對肉雞營養份代謝之影響(試驗二) ……..95
表2-9發酵飼料或菌粉對肉雞生長性狀之影響(試驗三) ...................96
表3-1 N21+L12發酵飼料對肉雞生長性狀之影響 (試驗一) ............109
表3-2 N21+L12發酵飼料對肉雞屠體性狀之影響(試驗一) ..............110
表3-3 N21+L12發酵飼料對肉雞消化道pH值之影響(試驗一) ........111
表3-4 N21+L12發酵飼料對肉雞消化道乳酸桿菌及大腸桿菌狀族群數之影響(試驗一) ...........................................................................112
表3-5 N21+L12發酵飼料對肉雞腸道酵素活性之影響(試驗一) ......113
表3-6 N21+L12發酵飼料對21日齡肉雞腸道組織學性狀之影響
(試驗一) ............................................................................................114
表3-7 N21+L12發酵飼料對雞隻營養份代謝之影響(試驗二) .........115
表3-8發酵飼料或菌粉對肉雞生長性狀之影響 (試驗三) ................116
王進琦。1989。食品微生物。藝軒圖書出版社,台北。pp:568。
宋永義。2006。新編乳牛學。華香園出版社,台北。pp:536。
吳定峰、邱至威。2003。食品微生物學精要。藝軒圖書出版社,台北。
杜冰、劉長海、吳建忠。2006。飼用微生態制劑-動物用益生菌的研究應用。糧食與飼料工業。7:38-39。
李良玉。1977。家禽組織學。藝軒圖書出版社,台北市。pp:41。
林志勳、江世楷。1996。腸道微生物:對動物營養的重要性。台灣養豬科學研究所,竹南,台灣。
林富美。2004。乳酸菌與免疫調節作用。食品工業。36(3):16-26。
陳吉平。1997。微生物學-概念與應用。睿煜出版社,屏東縣。
許元勳。2003。現代生物科技的新寵兒-神奇納豆菌。生物產業。14(1):53-59。
黃加成。1991。乳酸菌之特性與利用。雜糧與畜牧。221:21-28。
曹鈺、孫玲玲、陸健。2006。酸與膽汁耐性芽孢益生菌的篩選。飼料研究。12:31-34。
蔡英傑。1998。乳酸菌應用綜論。生物產業。9(4):258-265。
鄧德豐。1987。應用微生物。業強出版社,台北。
蘇遠志。2003。聚麩胺酸(γ-PGA)之發酵生產與應用。生物產業。14:31-38。
Abdulrahim, S. M., M. S. Y. Haddadin, E. A. R. Hashlamoun, and R. K. Robinson. 1996. The influence of Lactobacillus acidophilus and bacitracin on layer performance of chickens and cholesterol content of plasma and egg yolk. Br. Poult. Sci. 37: 341-346.
Barrow, P. 1992. Probiotics for chickens. In R. Fuller (ed.), Probiotics: the scientific basis. Chapman & Hall, London, United Kingdom. pp. 225-257.
Batal, A. B., and C. M. Parsons. 2003. Utilization of different soy products as affected by age in chicks. Poult. Sci. 82: 454-462.
Barnes, E. M., G. C. Mead, D. A. Barnum, and E. G. Harry. 1972. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. Br. Poult. Sci. 13: 311-326.
Bayer, R. C., C. B. Chawan, F. H. Bird and S. D. Musgrave. 1975. Characteristics of the absorptive surface of the small intestine of the chick form 1 day to 14 weeks of age. Poult. Sci. 54: 155-169.
Besong, S., J. A. Jackson, C. L. Hicks, and R. W. Hemken. 1996. Effects of a supplemental liquid yeast product on feed intake, ruminal profiles, and yield, composition, and organoleptic characteristics of milk from lactating holstein cows. J Dairy Sci. 79: 1654-1658.
Bergey Manual of Systematic Bacteriology. 1986. Williams and Wiljins, Baltimore. Vol. 2.
Bleichner, G., H. Blehaut, H. Mentec, and D. Moyse, 1997. Saccharomyces boulardii prevents diarrhea in critically ill tuve-fed patients. Intensive Care Med. 23: 517-523.
Boguhn, J., H. Kluth, and M. Rodehutscord. 2006. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. J. Dairy Sci. 89: 1580-91.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Canibe, N., and B. B. Jensen. 2003. Fermented and nonfermented liquid feed to growing pigs: Effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci. 81: 2019-2031.
Canibe, N., N. Miquel, H. Miettinen, and B. B. Jensen. 2001. Addition of formic acid or starter culture to liquid feed. Effect on pH, microflora composition, organic acid and ammonia concentration. Pages 431-432 in 15th Forum for Applied Biotechnil., Gent, Belgium.
Chah, C. C., C. W. Carlson, G. Semeniuk, I. S. Palmerand and C. W. Hesseltine. 1975. Growth-promoting effects of fermented sotbeans for broilers. Poult. Sci. 54: 600-609.
Chesson, A. 1993. Probiotics and other intestinal mediators. In: Recent Advances in Animal Nutrition. (Eds. P. C. Garnsworthy and D. J. A. Cole) Nottingham University Press. Nottingham, England.
Chiang, S. H. and W. M. Hsieh. 1995. Effect of direct-fed microorganisms on broiler growth performance and litter ammonia level. Asian-Aus. J. Anim. Sci. 8(2): 159-162.
Collington, G. K., D. S. Parker, and D. G. Armstrong. 1990. The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. Br. J. Nutr. 64: 59-70.
Collins, M. D., and G. R. Gibson. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69 (Suppl.): 1052S-1057S.
Conway, P. L. 1996. Selection criteria for probiotic microorganisms. Asia. Pacific. J. Clin. Nutr. 5: 10-14.
Crawford, J. S. 1979. Procbiotics in animal nutrition. Proceedings of 1979 Arkansas Nutrition Conference, Arkansa. USA. pp: 45-55.
Cumby, T. R. 1986. Design requirements of liquid feeding systems for pigs: A review. J. Agric. Eng. Res. 34: 153-172.
Donohue, D. C., and S. Salminen. 1996. Safety of probiotic bacteria. Asia. Pacific. J. Clin. Nutr. 5: 25-28.
Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67: 1855-1864.
Fasina, Y. O., J. D. Garlich, H. L. Classen, P. R. Ferket, G. B. Havenstein, J. L. Grimes, M. A. Qureshi, and V. L. Christensen. 2004. Respones of turkey poults to soybean lectin levels typically encountered in commercial diets. 1. Effect on growth and nutrient digestibility. Poult. Sci. 83: 1559-1571.
Feng, J., X. Liu, Y. Y. Liu, Z. R. Xu, and Y. P. Lu. 2007. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134: 235-242.
Fuller, R. 1989. Probiotic in man and animals. J. Appl. Bacteriol. 66: 365-378.
Fuller, R. 1992. Probiotics, The scientific basis. Page 1-8. Chapman & Hall. London. UK.
Fujita, M., K. Nomura, K. Hong, T. Ito, A. Asada, and S. Nishimura. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochemical and Biophysical Research. 197(3): 1340-1347.
Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactiei. J. Sci. Food Agric. 79: 636-640.
Ghazi, S., T. A. Rooke, H. Galbraith and A. Morgan. 1997. The potential for improving soya-ban meal in diets for chickens: treatment with different proteolytic enzyme. Br. Poult. Sci. 37: 554-555.
Giannella, R. A., S. A. Broitman, and N. Zamcheck. 1972. Gastric acid barrier to ingested microorganisms in men: studies in vivo and in vitro. Gut: J. British Society of Gastroenterology. 13: 251-256.
Gibson, P. R., E. van de Pol, L. E. Maxwell, and W. Doe. 1989. Isolation of colonic crypts that maintain structural and metabolic viability in vitro. Gastroenterology 96: 283.
Guan, L. L., K. E. Hagen, G. W. Tannock, D. R. Korver, G. M. Fasenko, and G. E. Allison. 2003. Detection and identification of Lacobacillus species in crops of broilers of different age by using PCR-denaturine gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl. Environ. Microbiol. 69: 6750-6757.
Haddadin, M. S. Y., S. M. Abdulrahim, E. A. R. Hashlamoun, and R. K. Robinson. 1996. The effect of Lactobacillus acidophilus on the production and chemical composition of hen’s eggs. Poult. Sci. 75: 491-494.
Halpern, G. M., T. Prindville, M. Blankenburg, T. Hsia, and M. E. Gershwin. 1996. Treatment of irritable bowel syndrome with Lactol Fort: a randomized, double- blind, cross-over trial. Am. J. Gastroenterol. 91: 1579-1585.
Hampson, D. J. 1986. Alteration in piglet small intestinal structure at weaning. Res. Vet. Sci. 40: 32-40.
Havenaar, R., B. T. Brink, and Huis Veld, H. H. J., and R. Fuller. 1992. Selection of strains for probiotics use. In: Probiotics the Sciontific Basis. (Ed. Fuller, R.), Chapman and Hall, Landon. pp: 209-222.
Hill, K. J. 1971. The physiology of digestion. In: Physiology and biochemistry of the domestic fowl. Vol. I. (Ed. D. J. Bell and B. M. Freeman). Academic Press, New York. pp: 28-32.
Hillman, K., R. J. Spencer., T. A. Murdoch, and C. S. Stewart. 1995. The effect of mixtures of Lactobacillus spp. on the survival of enterotoxigenic Escherichia coli in in vitro continuous culture of porcine intestinal bacteria. Lett. Appl. Microbiol 20: 130-133..
Hirabayashi, M., T. Marsui, H. Yano, and T. Nakajima. 1998a. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77: 552-556.
Hirabayashi, M., T. Matsui, and H. Yano. 1998b. Fermentation of soybean flour with Aspergillus usamii improves availability of zinc and iron in rats. J. Nutr. Sci. Vitaminol. (Toyko) 44: 877-886.
Holmquist, G. U., Walker, H. W., and Stahr, H. M. 1983. Influence of temperature, pH, water activity and antifungal agents on growth of Aspergilus flavus and A. parasiticus. J. Food Sci. 48: 778-782.
Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improve nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 7: 430-434.
Huyghebaert, G. 2003. Replacement of antibiotics in poultry. Eastern Nutrition Coference, Québec, Canada. 8-9 May. pp: 55-78.
Hyronimus, B., C. L. Marrec, A. H. Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. International J. Food Micro. 61: 193-197.
Ilyas, A., M. Hirabayashi, T. Matsui, H. Yano, T. Kikushima, M. Takebe, and K. Hayakawa. 1995. The note on the removal of phytic acid in soybean meal using Aspergillus usami. Asian-Austl. J. Anim. Sci. 8: 135-138.
Jensen, B. B., and L. L. Mikkelsen. 1998. Feeding liquid diets to pigs. in Recent Advance in Animal Nutrient. P. C. Garnsworthy and J. Wisenman, ed. Nottingham Univ. Press, Nottingham, U. K. pp: 107-126
Jiang, R., X. Chang, B.Stoll, K. J. Ellis, R. J. Shypallo, E. Weaver, J. Campbell, and D. G. Burrin 2000. Dietary plasma proteins used more efficiently than extruded soy protein for lean tissue growth in early-weaned pigs. J. Nutr. 130: 2016-2019.
Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali, and S. Jalaludin. 1998a. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70: 197-209.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1996a. Influence of dried Bacillus subtilis and Lactobacilli culture on intestinal microflora and performance in broilers. Asian-Australasian J. Anim. Sci. 9: 397-404.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1996b. Influence of dried Bacillus subtilis and lactobacilli cultures on intestinal microflora and performance in broilers. Asian-Aus. J. Anim. Sci. 9: 397-403.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1998b. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus culture. Poult. Sci. 77: 1259-1265.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79: 886-891.
Kalavathy, R., N. Abdullah, S. Jalaudin, and Y. W. Ho. 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 44: 139-144.
Kiers, J. L., J. C. Meijer, M. J. R. Nout, F. M. Romboys, M. J. A. Naburrs, and J. van der Meulen. 2003. Effect of femented soya beans on diarrhea and feed efficiency in weaned piglets. J. Appl. Microbiol. 95: 545-552.
Kim, N., J. L. Yang, and Y. S. Song. 1999. Physiological functions of chongkukjang. Food Ind. Nutr. 4: 40-46.
Koh, J. H., K. W. Yu, and H. J. Suh. 2002. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett. Appl. Microbiol. 35: 47-51.
Laemmli, P. A. 1970. Cleavage of structural proteins during the assembly of the head of bactriophage T4. Nature 227: 680-685.
Lawlor, P. G., P. B. Lynch, G. E. Gardiner, P. J. Caffrey, and J. V. O’Doherty. 2002. Effect of liquid feeding weaned pigs on growth performance to harvest. J. Anim. Sci. 80: 1725-1735.
Lee, H. J. 1998. Health functional peptides from soybean foods. Korea Soybean Digest. 15: 16-22.
Lee, S. Y., and B. H. Lee. 1990. Esterolytic and lipolytic activities of Lactobacillus casei¬-subsp-casei LGG. J. Food Sci. 55: 119-122.
Li, D. F., J. L. Nelssen, P. G. Raddy, F. Blecha, J. D. Hancock, G. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient gypersensitivity to soybean meal in the early weaned pig. J. Anim. Sci. 68: 1790-1799.
Lilly, D. M., and R. H. Stillwell. 1965. Probiotic: growth promoting factors produced by microorganisms. Sci. 147: 747-748.
Line, J. E., J. S. Bailey, N. A. Cox, and N. J. Stern. 1997. Yeast treatment to reduce Salmonella and Campylobacter populations associated with broiler chickens subjected to transport stress. Poult. Sci. 76: 1227-1231.
Lourens-Hattingh, A., and B.C. Viljoen. 2001. Growth and survival of a probiotic yeast in dairy products. Food Research International. 34: 791-796.
Lückstädt, C., N. Senköyliü, H. Akyürek, and A. Aĝma. 2004. Acidifier- a model alternative for anti-biotic free feeding in livestock production, with special focus on broiler production. Veterinarija ir Zootechnika. 27: 91-93.
March, B. E. 1979. The host and its microflora: an ecological unit. J. Anim. Sci. 49: 857-867.
Matsuo, M. 2006. Chemical components, palatability, antioxidant activity and antimutagenicity of oncom miso using a mixture of fermented soybeans and okara with Neurospora intermedia. J. Nutr. Sci. Vitaminol. (Tokyo) 52: 216-222.
Miles, R. D., and S. M. Bootwalla. 1991. Direct-fed microbials in animal production. In: Direct-fed microbials in animal production. A. review. National Feed Ingredient Association. West Des Moines, Iowa. USA. pp: 117-132.
Mohan, B., R. Kadirvel, M. Bhaskaran, and A. Natarajan. 1995. Effect of probiotic supplementation on serum/ yolk cholesterol and on egg shell thickness in layers. Br. Poult. Sci. 36: 799-803.
Mohan, B., R. Kadirvel, A. Natarajan, and M. Bhaskaran. 1996. Effect of probiotic supplementation on growth, nitrogen utilization and serum cholesterol in broilers. Br. Poult. Sci. 37: 395-401.
Mutus, R., N. Kocabagli, M. Alp, N. Acar, M. Eren, and S. S. Gezen. 2006. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult. Sci. 85: 1621-1625.
Nahashon, S. N., H. S. Nakaue, and L. W. Mirosh. 1992. Effect of direct-fed microbials on nutrient retention and production parameters of laying pullets. Poult. Sci. 71 (Suppl. 1) : 111.
Nahashon, S. N., H. S. Nakaue, and L. W. Mirosh. 1993. Effect of direct-fed microbials on nutrient retention and production parameters of Single Comb White Leghorn pullets. Poult. Sci. 72 (Suppl. 2) : 87.
Nahashon, S. N., H. S. Nakaue, and L. W. Mirosh. 1996. Performance of Single Comb White Leghorn layers fed a diet with a live microbial during the growth and egg laying phases. Animal Feed Science and Technology. 57: 25-38.
Niedzielin, K., H. Kordecki, and B. Brikenfeld. 2001. A controlled double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol. 13: 1143-1147.
Noy, Y., and D. Sklan. 1995. Digestion and absorption in the young chicks. Poult. Sci. 74: 366-373.
Noy, Y., and D. Sklan. 1997. Posthatch development in poulty. J. Appl. Poult. Res. 6: 344-354.
Parker, R. B. 1974. Probiotic, the other half of the antibiotic story. Anim. Nutr. Health. 29: 4-8.
Pascual, M., M. Hugas, R. I. Badiola, J. M. Monfort, and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Applied and Environmental Microbiology. 65: 4981-4986.
Roberfroid, M. B. 2000. Prebiotics and probiotics: are they functional foods. Am. J. Clin. Nutr. 71 (suppl): 1682S-1687S.
Roberto, M., R. La, C. Gabriella, M. C. Simon, and J. W. Martin. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Veterinary Microbiology. 79: 133-142.
Rooke, J. A., M. Slessor, H. Fraser, and J. R. Thomson. 1998. Growth performance and gut protease-treated soya-bean meal. Anim. Feed Sci. Technol. 70: 175-190.
Saarela, M., G. Mogensen, R. Fondén, J. Mättö, and T. Mattila-Sandholm. 2000. Probiotic bacteria: safety, functional and technological properties. 84: 197-215.
Saarela, M., L. Lahteenmaki, R. Crittenden, S. Salminen, and T. Mattila-Sandholm. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Microbial. 78: 99-117.
Saavedra, J. 1995. Microbes to fight microbes: A not so novel approach to controlling diarrhoeal disease. J. Pediatr. Gastroenterol. Nutr. 21: 125-129.
Santoso, U., K. Tanakaa, and S. Ohtania. 1995. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. British J. Nutri. 74: 523-529.
Santoso, U., K. Tanaka, S. Ohaniand, and M. Saksida. 2001. Effect of fermented product from Bacillus subitlis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian-Aust. J. Anim. Sci. 14(3): 333-337.
Savage, D. C. 1983. Mechanisms by which indigenous microorganisms colonize gastrointestinal epithelial surfaces. Prog. Food Nutr. Sci. 7: 65-75.
Scholten, R. 2001. Fermentation of liquid diets for pigs. Ph. D. Diss., Wageningen Univ, Wageningen, The Netherlands.
Scholten, R., C. M. M. van der Peet-Schwering, L. A. den Hartog, J. W. Schrama, and M. W. A. Verstegen. 2002. Fermented wheat in liquid diets: effects on gastrointestinal characteristics in weaning piglets. J. Anim. Sci. 80: 1179-1186.
Schrezenmerir, J., and M. de Vrese. Probiotics, prebiotics, and synbiotics- approaching a definition. An. J. Clin. Nutr. 2001. 73 (2): 361S-364S.
Sissons, J. W. 1989. Potential of probiotic organisms to prevent diarrhoea and promote digestion in farm animals: a review. J. Food and Agriculture Sci. 49: 1-13.
Spiehs, M. J., M. H.Whitney, and G. C. Shurson. 2002. Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80: 2639-2645.
Tannock, G. W. 2001. Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73: 410S-414S.
Tomasik, P. J., and P. Tomasik. 2003. Probiotics and prebiotics. Cereal Chem. 80(2): 113-117.
Tortuero, F., and E. Fernández. 1995. Effects of inclusion of microbial cultures in barley-based diets fed to laying hens. Anim. Feed Sci. Tech. 53: 255-265.
Tortuero, F., L. M. Rodriguez, and J. Barrera. 1989. Lactic acid bacteria and beansin the diets for chickens. Archivos de Zootecnia. 38: 141, 151-165.
Tsai, R. L., and C. W. Hsieh. 2005. Isolation and characterization of secreted fibrinolytic enzymes from Bacillus subtilis var. natto HC-3 using a combined method of SDS-PAGE and zymography. 2005年全球華人保健食品科技大會 研討會專輯 壁報論文第37頁。
Tuomola, E., R. Crittenden, M. Playme, E Islauri, and S. Salminen. 2001. Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 73: 393S-398S.
Uni, Z., Y. Noy, and D. Sklan. 1995. Development of the small intestine in heavy and light strain chicks before and after hatching. Br. Poult. Sci. 37: 63-71.
Van der Waaij, D., J. M. Berghuis, J. E. C. Lekkerkerk, - van der Wees. 1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. 69: 405.
Vecchi, E. De, and L Drago. 2006. Lactobacillus sporogenes or bacillus coagulans: misidentification or mislabelling? International Journal of Probiotics and Prebiotics 1(1): 3-10.
Xu, C. L., C. Ji, Q. Ma, K. Hao, Z. Y. Jin, and K. Li. 2006. Effect of a dried Bacillus subtilis culture on egg quality. Poult. Sci. 85(2): 364-368.
Yang, W. Z. and K. A. Beauchemin. 2006. Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use. J Dairy Sci. 89: 2694-2704.
Yeo, J., and K. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 76: 381-385.
Zoeckelin, B. W., K. C. Fugelsang, B. H. Group, and F. S. Nury. 1990. Prodction wine analysis. Van Nostrand Reinhold. New York.
Zhang, A. W., B. D. Lee, S. K. Lee, K. W. Lee, G. H. An, K. B. Song, and C. H. Lee. 2005. Effects of yeast (Saccharomuces cerevisiae) cell components on growth performance, meat quality and ileal mucosa development of broiler chicks. Poult. Sci. 84: 1015-1021.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top