跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱怡瑛
研究生(外文):Yi-Yin, Chiu
論文名稱:質群演算法(PSO)於多組解方程最佳化問題之研究
論文名稱(外文):Modified Particle Swarm Optimization for Solving the Global Optimization of Continuous Multimodal Functions
指導教授:范書愷范書愷引用關係
指導教授(外文):Shu-Kai S. Fan
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:質群演算法 (PSO)多組解最佳化實驗設計 (DOE)
外文關鍵詞:Particle Swarm Optimization (PSO)Multimodal FunctionDesign of Experiments (DOE)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
質群演算法(PSO)發展至今,許多由原始型改善而得之變化型亦有學者陸續發表。PSO的整體概念既簡單易懂,又能夠以較快速又較節省成本的方式獲得結果,便成為研究的初步動機;再加上原始型PSO於多組解最佳化問題的求解效率與收斂速度不佳,更促使本論文針對多組解最佳化問題展開研究,並且提出一適用於求解大型多組解最佳化問題的PSO方法。
在研究初期,使用實驗設計(DOE)的技術用以探討PSO的主要參數對整體演算法效果與效率之影響,由實驗設計的全因子分析所得之參數效果圖表與數據結果,提出一改善方案,稱為DW-PSO(Decreasing Weight Particle Swarm Optimization)。演算法的成功率和運算次數作為衡量指標,實驗結果顯示DW-PSO能夠解決多組解方程最佳化問題,除此之外,更進一步地將各式多組解最佳化方程同樣地套用於DW-PSO與其他學者所提出的PSO方法,由其比較結果可知,DW-PSO對大型多組解最佳化問題的求解表現與其他PSO方法相較之下,成功尋找總體最佳解之效果尤其顯著。
The development of the Particle Swarm Optimization (PSO) has been almost ten years since 1995. From that time on, a variety of modifications of the original PSO has been proposed by many PSO researchers. The evolutionary concept of PSO, simple in concept, easy to implement and computational efficient, is partly the motivation of this thesis. The performance of the original PSO on the solution quality and convergence speed becomes much aggravated while optimizing multimodal functions with higher dimension. This is the main objective of this research such that we would like to develop a modified PSO suitable for solving large-scale multimodal optimization problems.
In this study, design of experiments (DOE) has been conducted to investigate the influences of each parameter in PSO. Based the computation results in the DOE stage, a modified PSO, termed Decreasing Weight Particle Swarm Optimization (DW-PSO), has been addressed. The success rate and number of function evaluation are considered performance measures. The experimental results show that the DW-PSO shows great promise in solving multimodal functions. The computational comparisons with PSO variants further reveal that DW-PSO has significant advantages, especially when it is performed to solve high dimension problems.
TABLE OF CONTENTS
ABSTRACT i
摘要 ii
LIST OF TABLES v
LIST OF FIGURES vi
Chapter 1: INTRODUCTION 1
1.1 Background 1
1.2 Motivation 2
1.3 Research Goals and Objectives 3
1.4 Organization of the Thesis 4
Chapter 2: LITERATURE REVIEW 6
2.1 Evolutionary Computation 6
2.1.1 Genetic Algorithms 8
2.1.2 Evolutionary Programming 10
2.1.3 Evolution Strategies 11
2.2 Particle Swarm Optimization 13
2.2.1 Basic Particle Swarm Optimization 13
2.2.2 Development of Particle Swarm Optimization 16
2.2.3 Parameters of Particle Swarm Optimization 21
2.3 Methodologies of Multimodal Functions 23
Chapter 3: RESEARCH METHOD AND DOE RESULTS 28
3.1 Preliminaries 28
3.2 Parameter Selection by Using Design of Experiments (DOE) 31
3.3 Analysis of Experimental Results 34
3.4 Recommendation and Comments 38
Chapter 4: COMPUTATIONAL EXPERIMENTS 43
4.1 Modified Particle Swarm Optimization Focusing on Inertia Weight 43
4.2 The Computational Results of DW-PSO and PSO Variants 45
Chapter 5: CONCLUSION 50
REFERENCES 53
APPENDIX 59
REFERENCES
[ 1 ] Abido, M. A. (2002) Optimal Power Flow Using Particle Swarm Optimization, Electrical Power and Energy Systems, 24, 563-571.
[ 2 ] Bilbro, G. L. and Snyder W. E. (1991) Optimization of Functions with Many Minima, IEEE Transactions on Systems, Man and Cybernetics, 21, No. 4, 840-849.
[ 3 ] Bagley, J.D. (1967) The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms, Ph. D. dissertation, University of Michigan, Ann Arbor.
[ 4 ] Clerc, M. (1999) The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computation, Washington D.C., USA, 3, 1951-1957.
[ 5 ] Carlisle, A. J. (2002) Applying the Particle Swarm Optimizer to Non-stationary Environments, Auburn University, Auburn, Alabama.
[ 6 ] Chelouah, R. and P. Siarry (2000) A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions, Journal of Heuristics, 6, 191-213.
[ 7 ] Chelouah, R. and P. Siarry (2000) Tabu Search Applied to Global Optimization, European Journal of Operational Research, 123, 256-270.
[ 8 ] Chelouah, R. and P. Siarry (2003) Genetic and Nelder-Mead Algorithms Hybridized for a More Accurate Global Optimization of Continuous Multiminima Functions, European Journal of Operational Research, 148, 335-348.
[ 9 ] Chelouah, R. and P. Siarry (2004) An Hybrid Method Combining Continuous Tabu Search and Nelder-Mead Simplex Algorithms for the Global Optimization of Multiminima Functions, European Journal of Operational Research (to appear).
[ 10 ] De Jong, K. A. (1975) An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral Dissertation, University of Michigan, Ann Arbor.
[ 11 ] Eshelman, L. J. and J. D. Schaffer (1991) Preventing Premature Convergence in Genetic Algorithms by Preventing Incest, Proceedings of the Fourth International Conference on Genetic Algorithms, La Jolla, CA: Morgan Kaufmann, 115-122.
[ 12 ] Eberhart, R. C. and J. Kennedy (1995) A New Optimizer Using Particle Swarm Theory, Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, Japan, 39-43.
[ 13 ] Eberhart, R. C. and Y. Shi (2000) Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computing, San Diego, CA, USA, 84-89.
[ 14 ] Fogel, L. J., A. J. Owens and M. J. Walsh (1966) Artificial Intelligence through Simulated Evolution, New York: John Wiley and Sons.
[ 15 ] Fogel, L. J. (1994) Evolutionary Programming in Perspective: the Top-down View, Computational Intelligence: Imitating Life, 135-146.
[ 16 ] Fan, H. (2002) A Modification to Particle Swarm Optimization Algorithm, Engineering Computations, 19, No. 8, 970-989.
[ 17 ] Fan, S. K., Y. C. Liang and E. Zahara (2004) Hybrid Simplex Search and Particle Swarm Optimization for the Global Optimization of Multimodal Functions, Engineering Optimization, 36, 401-418.
[ 18 ] Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA: Addision-Wesley.
[ 19 ] Goldberg, D. E., K. Deb and B. Korb (1991) Don’t Worry, Be Messy, Proceeding of the Fourth International Conference on Genetic Algorithms, La Jolla, CA: Morgan Kaufmann, 24-30.
[ 20 ] Holland, J. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
[ 21 ] Holland, J. (1986) Escaping Brittleness: the Possibilities of General-purpose Learning Algorithms Applied to Parallel Rule-based Systems, Machine Learning: an Artificial Intelligence Approach, Los Altos: Morgan Kaufmann.
[ 22 ] Kennedy, J. and R. C. Eberhart (1995) Particle Swarm Optimization, Proceeding of the IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, 1942-1948.
[ 23 ] Kennedy, J. and W. M. Spears (1998) Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator, Proceedings of the International Conference on Evolutionary Computation, Anchorage, Alaska, 78-83.
[ 24 ] Kennedy, J., R. C. Eberhart and Y. Shi (2001) Swarm Intelligence, Morgan Kaufmann.
[ 25 ] Kannan, S., S. Mary Raja Slochanal, P. Subbaraj and N. Prasad Padhy (2004) Application of Particle Swarm Optimization Technique and Its Variants to Generation Expansion Planning Problem, Electric Power Systems Research, 70, 203-210.
[ 26 ] Lovbjerg, M. and T. Krink (2002) Extending Particle Swarm Optimizers with Self-Organized Criticality, Proceedings of Fourth Congress on Evolutionary Conference, 2, 1588-1593.
[ 27 ] Laguna, M. and R. Martí (2002) Experimental Testing of Advanced Scatter Search Designs for Global Optimization of Multimodal Functions (Submitted for Publication).
[ 28 ] Onwubolu, G. and M. Clerc (2004) Optimal Operating Path for Automated Drilling Operations by a New Heuristic Approach Using PSO, International Journal of Production Research, 42, No. 3, 473-491.
[ 29 ] Peer, E. S., F. van den Bergh and A. P. Engelbrecht (2003) Using Neighborhoods with the Guaranteed Convergence PSO, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indiana, USA, 235-242.
[ 30 ] Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem, Library translation No 1122, Royal Aircraft Establishment, Farnborough, HK.
[ 31 ] Rechenberg, I. (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution, Stuttgart, Germany: Frommann-Holzboog Verlag.
[ 32 ] Schwefel, H. P. (1965) Kybernetische Evolution als Strategie der experimentellen Forschung in der StrØmungstechnik, Diplomarbeit, Techniche Universität, Berlin.
[ 33 ] Schwefel, H. P. (1981) Numerical Optimization of Computer Models, New York: John Wiley and Sons.
[ 34 ] Spears, W. M., K. A. De Jong, T. Baeck, D. B. Fogel and H. de Garis (1993) An Overview of Evolutionary Computation, Proceedings of the European Conference on Machine Learning, P. B. Brazdil, Ed., 667, Springer Verlag, 442-459.
[ 35 ] Shi, Y. and R. C. Eberhart (1998) A Modified Particle Swarm Optimizer, Proceedings of IEEE International Conference of Evolutionary Computation, Anchorage, Alaska, 69-73.
[ 36 ] Shi, Y. and R. C. Eberhart (1998) Parameter Selection in Particle Swarm Optimization, Evolutionary Programming VII: Proceedings of 7th Annual Conference on Evolutionary Programming, Springer, Berlin, 591-600.
[ 37 ] Shi, Y. and R. C. Eberhart (1999) Empirical Study of Particle Swarm Optimization, Proceedings of the Congress on Evolutionary Computation, Washington, D.C., USA, 1945-1949.
[ 38 ] Shi, Y. and R. C. Eberhart (2001) Fuzzy Adaptive Particle Swarm Optimization, Proceedings of the 2001 Congress on Evolutionary Computation, 1, 101-106.
[ 39 ] Siarry, P. and M. Bessaou (2001) A Genetic Algorithm with Real-code to Optimize Multimodal Continuous Functions, Structural Multidisciplinary Optimal, 23, 63-74.
[ 40 ] Siarry, P., A. Pétrowski and M. Bessaou (2002) A Multipopulation Genetic Algorithm Aimed at Multimodal Optimization, Advances in Engineering Software, vol. 33, 207-213.
[ 41 ] Salman, A., I. Ahmad and S. Al-Madani (2002) Particle Swarm Optimization for Task Assignment Problem, Microprocessors and Microsystems, 26, 363-371.
[ 42 ] Tandon, V., H. El-Mounayri and H. Kishawy (2002) NC End Milling Optimization Using Evolutionary Computation, International Journal of Machine Tools and Manufacture, 42, 595-605.
[ 43 ] Van den Bergh, F. and A. Engelbrecht (2002) A New Locally convergent particle swarm optimizer, Proceedings of IEEE Conference on systems, Man and Cybernetics, Hammamet, Tunisia, 96-101.
[ 44 ] Van den Bergh, F. (2002) An Analysis of Particle Swarm Optimizers, PhD thesis, Department of Computer Science, University of Pretoria, South Africa.
[ 45 ] Van den Bergh, F. and A. P. Engelbrecht (2004) A Cooperative Approach to Particle Swarm Optimization, IEEE Transactions on Evolutionary Computation, 8, 225- 239.
[ 46 ] Xie, X. F., W. J. Zhang and Z. L. Yang (2002) Hybrid Particle Swarm Optimizer with Mass Extinction, International Conference on Communication, Circuits and Systems (ICCCAS), Chengdu, China.
[ 47 ] Xie, X. F., W. J. Zhang and Z. L. Yang (2002) A Dissipative Particle Swarm Optimization, IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 1456-1461.
[ 48 ] Yoshida, H., K. Kawata, Y. Fukuyama, S. and Y. Nakanishi (1999) A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Stability, IEEE International Conference on Intelligent System Applications to Power Systems, Brazil, 117-121..
[ 49 ] Zhang, L., H. Yu and S. Hu (2003) A New approach to improve Particle Swarm Optimization, Proceedings of the Genetic and Evolutionary Computation Conference, 134-139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李顯峰。1996。〈各級政府稅收的調整與稅制改革〉。《政策月刊》,期16,頁8-9。
2. 李華夏。1996。〈越南經改淺析-另一個統制經濟過度到市場經濟的實驗〉。《東南亞季刊》,卷1期2,頁1-13。
3. 宋鎮照。1993。〈依賴發展的政治經濟學分析:一個理論研究架構的探討〉。《思與言》,卷31期2,頁52-87。
4. 周育仁。1992。〈變遷中之我國政經關係〉。《公共政策學報》,期14,頁96-108。
5. 王佳煌。1997。〈東亞發展型國家—模範或特例〉。《東亞季刊》,卷28期4,頁1-38。
6. 林景春。1996。〈建立理財導向的政府財政〉。《政策月刊》,期16,頁6-7。
7. 孫克難。1996。〈政府財政、賦稅革新與國家競爭力〉。《經濟前瞻雙月刊》,卷11期5,頁110-117。
8. 梁錦文。1998。〈越南新『三頭馬車』之分析〉。《東南亞季刊》,卷3期3,頁14-34。
9. 黃登興。1999。〈金融風暴與東協自由貿易區的未來〉。《經濟情勢暨評論季刊》,卷4期1,頁15-41。
10. 黃賀。1996。〈越南之經濟改革與投資環境評析〉。《東南亞季刊》(南投:國立暨南際大學東南亞研究中心),卷1期1,頁62-70。
11. 蕭世輝。2000。〈分析美越簽署正常貿易協定對越南台商紡織業發展之影響〉。《東南亞投資》,12月號,頁1-22。
12. 蕭全政。1987。〈國家機關政治過程中的地位〉。《社會科學論叢》,期35,頁133-151。
13. 賴宗裕、蘇儀雯。2000。〈財政收支劃分法、地方財政課題與修法內容之探討〉。《人與地》,期203、204,頁74-95。
14. 羅石圃。1991。〈評析越共「七大」後的內外政策〉。《問題與研究》,卷30期9,頁:22-28。