跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張庭瑋
研究生(外文):Ting-Wei Chang
論文名稱:白光LED之全域式光學同調斷層掃描術
論文名稱(外文):Performance of white light LED as a light source in Full Field Optical Coherence Tomography
指導教授:郭文娟郭文娟引用關係
指導教授(外文):Wen-Chuan Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:48
中文關鍵詞:全域式光學同調斷層掃描術白光LEDCMOS相機即時顯示
外文關鍵詞:Full-field optical coherence tomography (FFOCT)light emitting diode(LED)complementary metal oxide semiconductor (CMOS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
光學同調斷層掃描術( Optical Coherence Tomography,OCT )為一種能提供非侵入式、非接觸式的物體內部二維截面影像的光學技術,全域式(FF)OCT與時域及頻率域OCT最大的不同在於不需掃描光束即能得到一張與樣品表面平行方向的二維影像。通常使用一低同調光源,例如鎢絲燈或超亮發光二極體作為整個照影區的照明,再搭配感光耦合元件作為影像接收以平行式的方式獲得照影區全部的干涉訊號。傳統FFOCT都需要相位調制與同步裝置,例如設計多步相移法,使隱藏於背景訊號下的干涉訊號做解調還原出某深度斷層影像。此論文提出將白光LED光源結合光學干涉儀,並且使用CMOS感光元件的偵測相機擷取光照射在物體背向散色光,最後藉由參考端移動方式,搭配不同影像演算法來優化重組還原影像並且即時顯示,以低成本的方式達到提升系統效能之關鍵技術。
Optical coherence tomography (OCT) is an imaging technique that permits non-invasive and non-contact cross-sectional imaging of an object. Full-field (FF) OCT differs from time-domain and frequency-domain OCT by producing tomographic images in the en-face orientation without scanning a light beam. The entire field of the image is illuminated with a low coherence source, such as a tungsten-halogen lamp or super luminescent diode (SLD). An image sensor, such as a charge-coupled device (CCD) camera, is used for parallel acquiring of the interferometric signals. Most of existing FFOCT systems need phase modulation and synchronization apparatus to extract the tomographic image hidden in background and interference fringes, and the traditional methods are based on multiple-step phase-shifting. For the cost reduction purpose and time efficiency consideration, we have demonstrated a FFOCT system based on Linnik interferometer which is the combination of a white light emitting diode(LED) and a complementary metal oxide semiconductor (CMOS) camera. An efficient algorithms for computing FFOCT en-face images are also compared.
目 錄

誌謝……………………………………………………………………………… i
中文摘要………………………………………………………………………… ii
英文摘要………………………………………………………………………… iii
目錄……………………………………………………………………………… iv
圖目錄…………………………………………………………………………… vi
表目錄……………………………………………………………………………viii
第一章 緒論.…………………………………………………………………… 1
1-1文獻統整.………………………………………………………… 1
1-2研究動機與目的.………………………………………………… 4
第二章 系統理論.……………………………………………………………… 5
2-1光學同調斷層掃描術.…………………………………………… 5
2-1.1全域式光學同調斷層掃描術.……………………………… 6
2-1.2低同調干涉術.……………………………………………… 7
2-1.3干涉可見度.………………………………………………… 11
2-1.4軸向解析度.………………………………………………… 12
2-1.5橫向解析度.………………………………………………… 14
2-1.6視場範圍.…………………………………………………… 16
2-1.7靈敏度.……………………………………………………… 17
2-1.8相機雜訊特性.……………………………………………… 17
2-2全域式OCT之重建影像演算法.………………………………… 18
2-2.1微分演算法.………………………………………………… 18
2-2.2傅立葉轉換演算法.………………………………………… 20
2-2.3二維希爾伯特轉換演算法.………………………………… 21
第三章 系統架構與參數.……………………………………………………… 22
3-1Linnik base全域式光學同調斷層掃描術架構..………………… 22
3-1.1干涉可見度.………………………………………………… 24
3-1.2軸向解析度.………………………………………………… 26
3-1.3橫向解析度.………………………………………………… 27
3-1.4視場範圍.…………………………………………………… 29
3-1.5靈敏度.……………………………………………………… 30
3-1.6相機雜訊特性.……………………………………………… 31
第四章 影像重建結果與討論.………………………………………………… 33
4-1實驗樣品.………………………………………………………… 33
4-2演算法之比較.…………………………………………………… 34
4-2.1 USAF 1951測試片影像……………………………………… 34
4-2.2 LCD液晶影像.……………………………………………… 35
4-2.3洋蔥表皮影像.……………………………………………… 37
4-4傅立葉轉換演算法.……………………………………………… 40
4-5散射斑點.………………………………………………………… 42
第五章 結論與未來展望.……………………………………………………… 44
參考文獻.……………………………………………………………………… 46

圖目錄

圖2.1 麥克森干涉儀架構示意圖.……………………………………………… 5
圖2.2 FFOCT架構示意………………………………………………………… 6
圖2.3 薄透鏡之數值孔徑示意圖.……………………………………………… 14
圖2.4 數值孔徑比較圖.………………………………………………………… 15
圖2.5 視野範圍實際放大倍率.………………………………………………… 16
圖2.5 傅立葉轉換演算法流程圖.……………………………………………… 20
圖3.1 Linnik base in FFOCT架構圖.…………………………………………… 22
圖3.2 理想干涉可見度量測.…………………………………………………… 24
圖3.3 實際干涉可見度量測.…………………………………………………… 25
圖3.4 軸向解析度.……………………………………………………………… 26
圖3.5 橫向解析度.……………………………………………………………… 28
圖3.6 物鏡視場範圍.…………………………………………………………… 29
圖3.7 最佳靈敏度.……………………………………………………………… 30
圖3.8 CMOS相機黑暗雜訊…………………………………………………… 31
圖3.9 光子散粒雜訊之量測.…………………………………………………… 32
圖4.1 實驗樣品.………………………………………………………………… 33
圖4.2 USAF 1951解析度測試片演算法比較………………………………… 35
圖4.3 光學顯微鏡之LCD液晶影像…..………………………………………… 36
圖4.4 LCD液晶擷取與還原影像……………………………………………… 35
圖4.5 光學顯微鏡之洋蔥表皮影像.…………………………………………… 36
圖4.6 洋蔥表皮擷取與還原影像.……………………………………………… 37
圖4.7 傅立葉轉換演算法之LCD影像………………………………………… 38
圖4.7 洋蔥細胞核還原en face影像…………………………………………… 39
圖4.8 洋蔥細胞核還原B-Scan影像…………………………………………… 39
圖4.9傅立葉轉換演算法之LCD影像.………………………………………… 40
圖4.10 傅立葉轉換演算法之USAF 1951測試片影像………………………… 41
圖4.11 散射斑點影像品質比較………………………………………………… 43
圖5.1 使用水鏡與超音波抗反射膠.…………………………………………… 45

表目錄

表1.1 FFOCT之光源列表.………………………………………………………… 2
表1.2 FFOCT之架構列表.………………………………………………………… 3
表1.3 FFOCT之偵測器列表.……………………………………………………… 3
表3.1 1951 USAF解析度對照表………………………………………………… 26

參考文獻

1. Huang, D., et al., OPTICAL COHERENCE TOMOGRAPHY. Science, 1991. 254(5035): p. 1178-1181.
2. Beaurepaire, E., et al., Full-field optical coherence microscopy. Optics Letters, 1998. 23(4): p. 244-246.
3. Dubois, A., et al., High-resolution full-field optical coherence tomography with a Linnik microscope. Applied Optics, 2002. 41(4): p. 805-812.
4. Dobroiu, A., et al., Coaxial Mirau interferometer. Optics Letters, 2002. 27(13): p. 1153-1155.
5. Grieve, K., et al., In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. Optics Express, 2005. 13(16): p. 6286-6295.
6. Moneron, G., A.L. Boccara, and A. Dubois, Polarization-sensitive full-field optical coherence tomography. Optics Letters, 2007. 32(14): p. 2058-2060.
7. Akiba, M., et al., Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography. Journal of Biomedical Optics, 2007. 12(4): p. 7.
8. Na, J., et al., Image restoration method based on Hilbert transform for full-field optical coherence tomography. Applied Optics, 2008. 47(3): p. 459-466.
9. Dubois, A., J. Moreau, and C. Boccara, Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. Optics Express, 2008. 16(21): p. 17082-17091.
10. Na, J., et al., Thickness and Refractive Index Measurements by Full-Field Optical Coherence Microscopy. Ieee Sensors Journal, 2009. 9(12): p. 1996-1997.
11. Choi, W.J., et al., Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Optics Express, 2010. 18(22): p. 23285-23295.
12. Latour, G., et al., Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography. Journal of Biomedical Optics, 2010. 15(5): p. 9.
13. Zlotnik, A., et al., Improved extended depth of focus full field spectral domain Optical Coherence Tomography. Optics Communications, 2010. 283(24): p. 4963-4968.
14. Akiba, M., K.P. Chan, and N. Tanno, Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras. Optics Letters, 2003. 28(10): p. 816-818.
15. Chang, S., et al., Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving. Optics Communications, 2005. 246(4-6): p. 579-585.
16. Egan, P., et al., Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera. Optical Engineering, 2006. 45(1): p. 6.
17. Hrebesh, M.S., R. Dabu, and M. Sato, In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography. Optics Communications, 2009. 282(4): p. 674-683.
18. Lu, S.H., et al., Full-field optical coherence tomography using nematic liquid-crystal phase shifter. Applied Optics, 2012. 51(9): p. 1361-1366.
19. McNamara, P.M., H.M. Subhash, and M.J. Leahy, In vivo full-field en face correlation mapping optical coherence tomography. Journal of Biomedical Optics, 2013. 18(12): p. 4.
20. Yu, L.F. and M.K. Kim, Full-color three-dimensional microscopy by wide-field optical coherence tomography. Optics Express, 2004. 12(26): p. 6632-6641.
21. Lu, S.H., C.J. Chang, and C.F. Kao, Full-field optical coherence tomography using immersion Mirau interference microscope. Applied Optics, 2013. 52(18): p. 4400-4403.
22. Tsugita, T., R. Kimura, and T. Iwai, Spectroscopic study on appearances of make-up skins using a visible RGB-LED OCT. Skin Res Technol, 2014. 20(3): p. 379-84.
23. Sacchet, D., et al., Simultaneous dual-band ultra-high resolution full-field optical coherence tomography. Optics Express, 2008. 16(24): p. 19434-19446.
24. Binding, J., et al., Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Optics Express, 2011. 19(6): p. 4833-4847.
25. Choi, W.J., et al., Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography. Journal of Biomedical Optics, 2012. 17(3): p. 6.
26. Subhash, H.M., Full-Field and Single-Shot Full-Field Optical Coherence Tomography: A Novel Technique for Biomedical Imaging Applications. Advances in Optical Technologies, 2012. 2012: p. 1-26.
27. Latour, G., et al., Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers. Optics Communications, 2010. 283(23): p. 4810-4815.

28. Anna, T., et al., High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells. Applied Optics, 2011. 50(34): p. 6343-6351.
29. Morin, A. and J.M. Frigerio, Aperture effect correction in spectroscopic full-field optical coherence tomography. Applied Optics, 2012. 51(16): p. 3431-3438.
30. Tsai, C.C., et al., Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography. Biomedical Optics Express, 2014. 5(9): p. 3001-3010.
31. Pezzati, L., et al., Study of varnish layers with optical coherence tomography in both visible and infrared domains. 2009. 7391: p. 73910J.
32. Nahas, A., et al., From supersonic shear wave imaging to full-field optical coherence shear wave elastography. Journal of Biomedical Optics, 2013. 18(12): p. 8.
33. .http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?Cnlid=13&;id=0000201503_7YU4OURI1NE5NO2ZHM8F3 轉載自DIGITIMES
34. http://www.ledinside.com.tw/knowledge/20090421-9722.html 轉載自LEDINSIDE
35. .http://mic.iii.org.tw/aisp/reports/reportdetail_register.asp?docid=2912&;rtype=freereport 轉載自MIC研究報告
36. Leitgeb, R., C.K. Hitzenberger, and A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003. 11(8): p. 889-894.
37. Miles V. Klein, Thomas E. Furtak, Optics:Wiley New York, 1990.
38. Chang, S., X. Cai, and C. Flueraru, An efficient algorithm used for full-field optical coherence tomography. Optics and Lasers in Engineering, 2007. 45(12): p. 1170-1176.
39. Fujimoto, J.G., et al., Real-time single-shot full-field OCT based on dual-channel phase-stepper optics and 2D quaternionic analytic signal processing. 2009. 7168: p. 71681H-71681H-9.
40. Redding, B., M.A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination. Nature Photonics, 2012. 6(6): p. 355-359.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top