跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏嘉良
研究生(外文):Yen,Chia-Liang
論文名稱:Bis-(8-hydroxyquinoline)magnesium(MgQ₂)有機金屬錯合物材料合成及應用於火炸藥感測之研究
論文名稱(外文):Study on Explosive Detection to Application Synthesis of Bis-(8-hydroxyquinoline) magnesium (MgQ₂)
指導教授:張章平
指導教授(外文):Chang,Chang-ping
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:8-羥基喹啉8-羥基喹啉鎂錯合物聚乙烯吡咯酮氧化鋅火炸藥溶膠-凝膠法螢光消光反應
外文關鍵詞:8-HydroxyquinolineBis-(8-hydroxyquinoline) magnesiumpolyvinyl pyrrolidonesensitivityzinc oxideExplosivesol-gel methodfluorescence quenching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:599
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究運用8-羥基喹啉分子與二價金屬鎂離子螯合成MgQ₂錯合物為螢光材料,並輔以傅立葉紅外線光譜儀、質譜、紫外/可見吸收光譜及螢光光譜儀器鑑定其特徵。另外運用溶膠-凝膠法將MgQ₂錯合物、金屬半導體氧化鋅(ZnO)及不同重量百分比之聚乙烯吡咯酮(PVP)混合製成複合感測材料薄膜,赓續以製備之材料分別與三硝基甲苯(TNT)、苦味酸 (PA)、史帝芬酸(Styphenic Acid)、2,6-二硝基甲苯(2,6-DNT)、2,3-二硝基甲苯(2,3-DNT) 及3,4-二硝基甲苯(3,4-DNT)等6種火炸藥行感測實驗,由實驗數據顯示所製備之螢光材料對DNT,TNT,PA及Styphenic Acid等6種火炸藥具有顯著之螢光消光感測靈敏性,因此,這些複合材料及MgQ₂錯合物可嘗試運用於火炸藥感測之研究,而其材料之螢光消光反應現象則以火炸藥蒸氣壓、化合物之間相互反應及材料能階理論解釋之。
In the present work, The fluorescent MgQ₂ complex, containing bis-(8-hydroxyquinoline) and magnesium(Ⅱ) was synthesized. The complexes were characterized by Fourier transform infrared Spectroscopy(FTIR), Mass Spectroscopy, Ultra-Violet Visible Spectroscopy(U.V) and Fluorescent Spectrum. In addition, the sol-gel method has been employed in the fabrication of composite sensing films consisting of bis-(8-hydroxyquinoline)magnesium, Znic oxide(ZnO) and polyvinyl -pyrrolidone(PVP). These films were examined for applications to detect explosives
compounds such as 2,4,6-trinitrotoluene(TNT), picric acid(PA), styphenic acid, 2,3-dinitrotoluene(2,3-DNT), 2,6-dinitrotoluene (2,6-DNT) and 3,4-dinitrotoluene
(3,4-DNT). The composite thin film showed high fluorescence quenching sensitivity towards DNT, TNT, PA and Styphnic Acid, indicating that composite sensing films consisting of emissive bis-(8-hydroxyquinoline)magnesium are potentially useful chemosensor for detecting explosives. The relative sensitivity of fluorescence quenching of emissive materials by the explosives has been rationalized in terms of the vapor pressure of the explosives, the interaction of the emissive compound and the analyles, and the relative energy levels of the emissive materials.
誌謝. ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 4
2. 文獻回顧 5
2.1 火炸藥偵檢 5
2.2 火炸藥偵檢技術 6
2.3 化學發光檢測 7
2.4 分子發光原理 13
2.5 分子軌域理論 15
2.6 電子躍遷 17
2.7 螢光原理 17
2.7.1 振動弛緩 20
2.7.2 內能轉換 21
2.7.3 螢光放射 21
2.7.4 外部轉換 21
2.7.5 系統跨越 21
2.7.6 磷光發射 22
2.8 量子產率 22
2.9 影響螢光的因素 23
2.9.1 溫度效應 23
2.9.2 pH值對螢光的影響 23
2.9.3 磁性分子及金屬的影響 23
2.9.4 取代基效應 24
2.9.5 分子結構的影響 25
2.9.6 重原子效應 25
2.9.7 氫鍵對螢光的影響 25
2.9.8 激發複合體生成 26
2.9.9 溶劑效應 26
2.9.10 濃度消光效應 27
2.10 螢光消光理論 27
2.10.1 螢光消光 27
2.10.2 能量轉移 28
2.10.3 光誘導電子轉移 32
3. 實驗 33
3.1 實驗研究架構流程 33
3.2 實驗藥品器材 34
3.3 實驗儀器設備 34
3.4 實驗步驟 35
3.4.1 合成 35
3.4.2 火炸藥飽和蒸氣壓螢光消光試驗 37
3.4.3 火炸藥溶液混合螢光消光試驗 40
4. 結果與討論 42
4.1 有機金屬錯合物材料合成鑑定 42
4.1.1 紫外光∕可見光光譜分析 42
4.1.2 紅外光譜及質譜分析 43
4.1.3 螢光光譜分析 45
4.2 複合材料之圖譜分析 48
4.2.1 紫外光∕可見光光譜分析 48
4.2.2 螢光光譜分析 51
4.3 火炸藥飽和蒸氣壓螢光消光試驗 52
4.3.1 MgQ₂有機金屬錯合物材料螢光消光結果分析 52
4.3.2 6種不同複合材料螢光消光結果分析 57
4.4 各檢測材料比較 81
4.5 有機金屬錯合物作為火炸藥溶液檢測材料 84
4.5.1 螢光光譜變化分析 84
4.5.2 紫外∕可見光譜吸收變化分析 88
4.6 檢測試樣與待測分析物螢光消光作用機制探討 94
5.結論 95
參考文獻 97
自傳 102
[1]Senesac, L., Thundat, T. G., “Nanosensors for trace explosive detection”, Materialstody, Vol.11, pp.28-36, 2008.
[2]The National Counterterrorism Center, “The NCTC Report On Terrorism,” The National Counterterrorism Center, U.S.A, pp. l-78, 2009.
[3]俞天穎,“俄羅斯連環爆炸的多重視角”, 世界知識,第八期,第24-26頁,2010。
[4]孟憲輝,“恐怖份子爆裂物運用之初探”,恐怖主義與國家安全學術研討暨實務座談會論文集,台北,第43-50頁,2004。
[5]張章平、葉早發、袁俊龍,“火炸藥和炸藥殘跡性質檢測之研究”,黃埔學報,第五十二期,第71-90頁,2007。
[6]孟憲輝,“爆炸物檢測” ,核生化防護與應變科技研討會論文集,台北,第118-126頁,2003。
[7]Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C., Jalal, H., “Detection of Explosives and Their Degradation Products in Soil Environments”, Journal of Chromatography A, Vol.963, pp.411-418, 2002.
[8]Yinon, J., Counterterrorist Detection Techniques of Explosives, Elsevier Book Aid Information Sabre Foundation, Oxford OX2 8DP, UK, pp. 1-40, 2007.
[9]Pettersoon, A.,Wallin, S., Brandner, B., Eldsäter, C.,Holmgren, E., “Explosives Detection-A Technology lnventory,” FOI-R--2030--SE, pp.1-74, September, 2006.
[10]Zhou, Q., Swager, T. M., “Fluorescent Chemosensors Based On Energy Migration In Conjugated Polymers:The Molecular Wire Approach To Increased Sensitivity,” Journal of the American Chemical Society , Vol.117, pp.12593-12602, 1995.
[11]Yang, J. S., Swage, T. M., “Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials”, Journal of the American Chemical Society, Vol.120, pp.5321-5322, 1998.
[12]Yang, J. S., Swage,T. M., “Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects”, Journal of the American Chemical Society, Vol.120, pp.11864-11873, 1998.
[13]Rose, A., Lugmair, C. G., Swager, T. M. , “Excited-State Lifetime Modulation in Triphenylene-Based Conjugated Polymers”, Journal of the American Chemical Society, Vol.123, pp.11298-11299, 2001.
[14]Yinon, J., “Detection of Explosives by Electronic Noses”, Analytical Chemistry, pp.99-105, 2003.
[15]Sohn, H., Sailor, M. J., Magde, D., Trogler, W. C., “Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles,” Journal of the American Chemical Society, Vol.125, pp.3821-3830, 2003.
[16]Chang, C. P., Chao, C. Y., Huang, J. H.,Li, A. K.,Hsu, C. S.,Lin, M. Sh., Hsieh, B. R., Su, A. C., “Fluorescent Conjugated Polymer Flms As TNT Chemosensors,” Synthetic Metals, Vol.144, pp.297-301, 2004.
[17]Swager, T. M., “Electronic Noses & Sensors for the Detection of Explosives”, Kluwer Academic Publishers, Netherlands, pp.29-37, 2004.
[18]Byall, E. B., ‘Detection and Characterization Of Explosives and Explosive Residue”, A Review, 13th Interpol Forensic Science Symposium, Lyon,France, October, pp.16-19, 2001.
[19]Bruschini, C., “Commercial Systems for the Direct Detection of Explosives(for Explosive Ordnance Disposal Tasks),” ExploStudy, Final Report FOI-R--2030--SE, pp.1-68, September, 2001.
[20]Yinon, J., “Field Detection And Monitoring of Explosives ,” Trends in Analytical Chemistry, Vol.21, pp.292-301, 2002.
[21]Singh, S., Singh, M., “Explosives Detection Systems (EDS) For Aviation Security ,” Signal Processing,Vol.83, pp.31-55, 2003.
[22]Jiménez, A. M., Navas, M. J., “Chemiluminescence Detection Systems For the Analysis of Explosives ,” Journal of Hazardous Materials, Vol.106A, pp.1-8,2004.
[23]Moore, D. S., ”Instrumentation For Trace Detection of High Explosives”, Review of Scientific Instruments, Vol.75, pp.305-314, 2004.
[24]Knight, A. W., “A Review of Recent Trends in Analytical Applications of Electrogenerated Chemiluminescence”, Trends in Analytical Chemistry, Vol.18,pp.47-62, 1999.
[25]Toal, S. J., Trogler, W. C., “Polymer Sensors For Nitroaromatic Explosives Detection”, Journal of Materials Chemistry, Vol.16, pp.2871-2883, 2006.
[26]Sanchez, J. C., DiPasquale, A. G., Rheingold, A. L., Trogler, W. C., “Synthesis, Luminescence Properties, and Explosives Sensing with1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers”, Chemistry of Materials, Vol.19, pp. 6459-6470, 2007.
[27]Valeur, B., Molecular Fluorescence, Wiley-Vch, Federal Republic of Germany, pp.8-11, 2002.
[28]Lakowicz, Joseph, R., Principles of Fluorescence Spectroscopy, Springer, New York , pp.277-351, 2006.
[29]Hsu, C. P.,“The Electronic Couplings in Electron Transfer and Excitation Energy Transfer,” Accounts of Chemical Research , Vol.42, pp.509-518, 2009.
[30]Hsu, C. P., You, Z. Q., Fleming, G. R., “Triplet-triplet energy-transfer coupling: Theory and calculation,” The Journal of Chemical Physics, Vol.124,pp.044506(1-10), 2006.
[31]Xu, B. S., Hao, Y. Y., Wang, H., Zhou, H. F.,Liu, X. G., Chen, M. W., “The Effects of Crystal Structure on Optical Absorption/Photoluminescence of Bis(8-hydroxyquinoline)zinc,” Solid State Communications, Vol.136,pp.318-322, 2005.
[32]Hopkins, T. A., Meerholz, K., Shaheen, S., Anderson, M. L., Schmidt, A., Kippelen, B., Padias, A. B., Hall, H. K.,Jr., Peyghambarian, N., Armstrong , N. R., “Substituted Aluminum and Zinc Quinolates with Blue-Shifted Absorbance/Luminescence Bands: Synthesis and Spectroscopic, Photoluminescence, and Electroluminescence Characterization,” Chemistry of Materials, Vol.8, pp.344-351, 1996.
[33]Hao, Y. Y.,Wang, H., Hao, H. T., Zhou, H. F., Liu, X. G. , Xu, B. S., “Synthesis,Characterization and Photoluminescent Property of Lithium Complex With 8-Hydroxyquinoline,” Chinese Jouranl of Luminescence, Vol.25, pp.419-424, 2004.
[34]Engelter, C., Jackson, G., Knight, C. L., Thornton, D. A., “Spectra-Structure Correlations From The Infrared Spectra of Some Transition Metal Complexes of 8-Hydroxyquinoline,” Journal of Molecular Structure, Vol.213, pp.133-144,1989.
[35]Li, H., Zhang, F., Wang, Y., Zheng, D., “Synthesis And Characterization of Tris-(8-hydroxyquinoline)aluminum,” Materials Science and Engineering B,Vol.100, pp.40-46, 2003.
[36]Gao, H., Li, Q., Dai, Y., Luo, F., Zhang, H. X., “High Efficiency Corrosion Inhibitor 8-Hydroxyquinoline And Its Synergistic Effect With Sodium Dodecylbenzenesulphonate on AZ91D Magnesium Alloy,” Corrosion Science, Vol. 52, pp.1603-1609, 2010.
[37]Barberis, V. P., Mikroyannidis, J. A., “Synthesis And Optical Properties of Aluminum And Zinc Quinolates Through Styryl Subsituent in 2-position,” Synthetic Metals, Vol.156, pp.865-871, 2006.
[38]Fan, W. H., Hao, Y. Y., Fang, X. H., Xu, B. S., Zeng, F. G. , “Theoretical Study on The Effect of Substituting Group on The Electronic Spectrum of 8-Hydroxyquinoline Lithium,” Journal of Functional Material, Vol.5, pp.700-702, 2007.
[39]Shi, M. M, Lin, J. J., Shi, Y. W., Ouyang, M., Wang, M., Chen, H. Z., “Achieving Blue Luminescence of Alq₃ Through The Pull-push Effect of The Electron-Withdrawing And Electron-Donating Dubstituents,” Materials Chemistry And Physics, Vol.115, pp.841-845, 2009.
[40]Krishnakumar, V., Nagalakshmi, R., Janaki, P., “Growth and Spectroscopic Characterization of a New Organic Nonlinear Optical Crystal—8-Hydroxyquinoline,” Spectrochimica Acta Part A,Vol.61, pp.1097-1103, 2005.
[41]He, J., Deng, L., Yang, S., “Synthesis and Characterization of β-cyclodextrin inclusion Complex Containing Di(8-hydroxyquinoline)- magnesium,”Spectrochimica Acta Part A,Vol.70, pp.878-883, 2008.
[42]Ohnesorge, W. E., Rogers, L. B., “Fluorescence of Some Metal Chelate Compounds of 8-quiuoliuol-I* Effect of Metallic Ion And Solvent on Speckun And Quantum Yield,” Spectrochimica Acta, pp.27-40, 1959.
[43]Bardez, E., Devol, I., Larrey, B., Valeur, B., “Excited-State Processes in 8-Hydroxyquinoline: Photoinduced Tautomerization and Solvation Effects,” The Journal of Physical Chemistry.B, Vol.101, pp.7786-7793, 1997.
[44]Cheatum, C. M., Heckscher, M. M., Crim, F. F., “Excited-State Dynamics in 8-hydroxyquinoline Dimers,” Chemical Physics Letters, Vol.349, pp.37-42,2001.
[45]Bronson, R. T., Montalti, M., Prodi, L., Zaccheroni, N., Lamb, R. D., Dalley, N. K., Izatt, R. M., Bradshaw, J. S., Savage, P. B., “Origins of ‘on–off’ Fluorescent Behavior of 8-hydroxyquinoline Containing Chemosensors,” Tetrahedron,Vol.60, pp.11139-11144, 2004.
[46]Kimyonok, A., Wang, X. Y., Weck, M., “Electroluminescent Poly(quinoline)s and Metalloquinolates,” Journal of Macromolecular Science.Part C, Polymer Reviews, Vol.46, pp.47-77, 2006.
[47]Park, S., Kim, S., Seo, J.and Park, S. Y., “Application of Excited-State Intramolecular Proton Transfer (ESIPT) Principle to Functional Polymeric Materials,”Macromolecular Research, Vol.16, pp 385-395, 2008.
[48]Chen, C. H., Shi, J., “Metal Chelates as Emitting Materials For Organic Electroluminescence,” Coordination Chemistry Reviews, Vol.171,pp.161-174, 1998.
[49]Albrecht, M., Fiege, M., Osetska, O., “8-Hydroxyquinolines in Metallo- supramolecular Chemistry,” Coordination Chemistry Reviews,
Vol.252,pp.812-824, 2008.
[50]Sharma, A., Singh, D., Makrandi, J. K., Kamalasanan, M. N., Shrivastva, R., Singh, I., “Fabrication and Characterization of OLED With Mg Complex of 5-chloro-8-hydroxyquinoline as Emission Layer,” Materials Chemistry and Physics,Vol.108, pp.179-183, 2008.
[51]Liu, Y. L., Liua, Y. C., Feng, W., Zhang, J. Y., Lu, Y. M., Shen, D. Z., Fan, X. W., Wang, D. J., Zhao, Q. D., “The Optical Properties of ZnO Hexagonal Prisms Grownfrom Poly(vinylpyrrolidone)-assisted Electrochemical Assembly onto Si(111)substrate,” Jouranl of Chemical Physics , Vol.122, pp.174703(1-4), 2005.
[52]Kumar, K. V., Nagalakshmi, R., “Vibrational Spectroscopic Studies of an Organic Non-Linear Optical Crystal 8-hydroxyquinolinium Picrate”, Spectrochimica Acta Part A, Vol.66, pp.924-934, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top