|
Akbani, R., & Kwek, S. (2004). Applying support vector machines to imbalanced datasets. Machine Learning: ECML 2004 (pp. 39-50). Berlin, Germany. Retrieved from http://www.springerlink.com/index/PA57EAM5T5DKEM4H.pdf Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589. JSTOR. doi:10.2307/2978933 Arminger, G., Enache, D., & Bonne, T. (1997). Analyzing credit risk data: a comparison of logistic discrimination, classification tree analysis, and feedforward neural networks. Computational Statistics, 12(2), 293-310. Retrieved from citeulike-article-id:648863 Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE transactions on neural networks, 12(4), 929-35. doi:10.1109/72.935101 Baesens, B., Van Gestel, T., Stepanova, M., Van den Poel, D., & Vanthienen, J. (2005). Neural network survival analysis for personal loan data. Journal of the Operational Research Society, 56(9), 1089-1098. doi:10.1057/palgrave.jors.2601990 Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627-635. doi:10.1057/palgrave.jors.2601545 Banasik, J., Crook, J. N., & Thomas, L. C. (1999). Not if but when will borrowers default. Journal of the Operational Research Society, 50(12), 1185-1190. doi:10.1057/palgrave.jors.2600851 Berger, A. N., Frame, W. S., & Miller, N. H. (2005). Credit scoring and the availability, price, and risk of small business credit. Journal of Money, Credit and Banking, 37(2), 191-222. Bernhardsen, E. (2001). A model of bankruptcy prediction. Citeseer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6764&rep=rep1&type=pdf Bonfim, D. (2009). Credit risk drivers: evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking & Finance, 33(2), 281-299. Elsevier B.V. doi:10.1016/j.jbankfin.2008.08.006 Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1007/BF00058655 Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446-3453. Elsevier Ltd. doi:10.1016/j.eswa.2011.09.033 Chawla, N. V., Bowyer, K. W., & Hall, L. O. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187-220. Retrieved from http://www.jstor.org/stable/10.2307/2985181 DeYoung, R., Glennon, D., & Nigro, P. (2008). Borrower–lender distance, credit scoring, and loan performance: Evidence from informational-opaque small business borrowers☆. Journal of Financial Intermediation, 17(1), 113-143. doi:10.1016/j.jfi.2007.07.002 Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 155–164). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=312220 Drummond, C., & Holte, R. C. (2003). C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. Workshop on Learning from Imbalanced Datasets II (pp. 1-8). doi:10.1.1.68.6858 Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665. doi:10.1016/j.jfineco.2005.10.011 Dwyer, D. W., Kocagil, A. E., & Stein, R. M. (2004). The Moody’s KMV RiskCalc v3. 1 Model: Next-Generation Technology for Predicting Private Firm Credit Risk (pp. 1-36). Eklund, T., Larsen, K., & Bernhardsen, E. (2001). Model for analysing credit risk in the enterprise sector. Norges Bank Economic Bulletin, Q3(01), 99–106. Elandt-Johnson, R. C., & Johnson, N. L. (1999). Survival models and data analysis (p. 457). Wiley-Interscience. Retrieved from http://books.google.com/books?id=LCZsNo1ek6AC&pgis=1 Frame, W. S., & White, L. J. (2004). Empirical studies of financial innovation: lots of talk, little action? Journal of Economic Literature, 42(1), 116–144. JSTOR. Retrieved from http://www.jstor.org/stable/10.2307/3217038 Frame, W. S., Srinivasan, A., & Woosley, L. (2012). The effect of credit scoring or lending. Banking, 33(3), 813-825. Gersbach, H., & Lipponer, A. (2003). Firm defaults and the correlation effect. European Financial Management, 9(3), 361-378. doi:10.1111/1468-036X.00225 Henderson, R., & Keiding, N. (2005). Individual survival time prediction using statistical models. Journal of medical ethics, 31(12), 703-6. doi:10.1136/jme.2005.012427 Huang, S.-chang. (2011). A new corporate credit scoring system using semi-supervised discriminant analysis. African Journal of Business Managenent, 5(22), 9355-9362. Kocenda, E., & Vojtek, M. (2011). Default predictors in retail credit scoring: evidence from czech banking data. Emerging Markets Finance and Trade, 47(6), 80-98. doi:10.2753/REE1540-496X470605 Kumar, D. A., & Ravi, V. (2008). Predicting credit card customer churn in banks using data mining. International Journal of Data Analysis Techniques and Strategies, 1(1), 4. doi:10.1504/IJDATS.2008.020020 Li, Z., & Wang, W. (2011). A re-sampling method for class imbalance learning with credit data. Proceedings of the 2011 International Conference on Information Technology, Computer Engineering and Management Sciences (pp. 393-397). IEEE Computer Society, Los Alamitos, CA, USA. doi:10.1109/ICM.2011.34 Louzada, F., Anacleto-junior, O., Candolo, C., & Mazucheli, J. (2011). Expert systems with applications poly-bagging predictors for classification modelling for credit scoring. Expert Systems With Applications, 38(10), 12717-12720. Elsevier Ltd. doi:10.1016/j.eswa.2011.04.059 Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141. doi:10.2307/3003143 Mester, L. J. (1997). What’s the point of credit scoring? Federal Reserve Bank of Philadelphia Business Review, 3, 3–16. Federal Reserve Bank of Philadelphia. Narain, B. (1992). Survival analysis and the credit granting decision. In L C Thomas, J. N. Crook, & D. B. Edelman (Eds.), Credit Scoring and Credit Control. Oxford: Clarendon Press. Retrieved from citeulike-article-id:651905 Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. doi:10.1007/BF00116251 Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. (M. B. Morgan, C. Leyba, & J. Hammett, Eds.) (1st ed., p. 302). San Mateo, CA: Morgan Kaufmann. Roszbach, K. (2004). Bank lending policy, credit scoring, and the survival of loans. Review of Economics and Statistics, 86(4), 946-958. doi:10.1162/0034653043125248 Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101-124. The University of Chicago Press. doi:10.2139/ssrn.171436 Thomas, Lyn C. (2000). A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting, 16(2), 149-172. doi:10.1016/S0169-2070(00)00034-0 Tong, E. N. C., Mues, C., & Thomas, L. C. (2012). Mixture cure models in credit scoring: If and when borrowers default. European Journal of Operational Research, 218(1), 132-139. Elsevier B.V. doi:10.1016/j.ejor.2011.10.007 Tong, L.-I., Chang, Y.-C., & Lin, S.-H. (2011). Determining the optimal re-sampling strategy for a classification model with imbalanced data using design of experiments and response surface methodologies. Expert Systems with Applications, 38(4), 4222-4227. Elsevier Ltd. doi:10.1016/j.eswa.2010.09.087 Tudela, M., & Young, G. (2003). Predicting default among UK companies: a Merton approach. Bank of England Financial Stability Review, (June), 104-114. Citeseer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.197.7163 Wang, G., Hao, J., & Ma, J. (2011). A comparative assessment of ensemble learning for credit scoring. Expert systems with applications, 38(1), 223-230. Elsevier Ltd. doi:10.1016/j.eswa.2010.06.048 Yobas, M. B., Crook, J. N., & Ross, P. (2000). Credit scoring using neural and evolutionary techniques. IMA Journal of Management Mathematics, 11(2), 111–125. IMA. Retrieved from http://imaman.oxfordjournals.org/content/11/2/111.short Zhang, D., Zhou, X., Leung, S. C. H., & Zheng, J. (2010). Expert systems with applications vertical bagging decision trees model for credit scoring. Expert Systems With Applications, 37(12), 7838-7843. Elsevier Ltd. doi:10.1016/j.eswa.2010.04.054
|