跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳育琛
研究生(外文):Yu-Chen Chen
論文名稱:設計一種使用三個輸入端的結構化客製晶片的查表基本單元
論文名稱(外文):Three Input Look-up-Table Design for Structured ASICs
指導教授:林榮彬林榮彬引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:45
中文關鍵詞:三個輸入端結構化客製晶片查表基本單元
外文關鍵詞:Three Input Look-up-TableStructured ASICs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
積體電&;#63799;(IC)的製程越&;#63789;越先進,在設計IC時要處&;#63972;的問題也越&;#63789;越困難。一般&;#63789;&;#63855;,一個晶片是由多的&;#63754;屬層組成,但在越先進的製程中,製作&;#63754;屬層的光罩費用變得相當龐大。為&;#63930;在IC設計的成本和效能間取得平衡,因此出現一個新的設計方法,稱作可結構化客製晶片。可結構化客製晶片由一些預製的電晶體,事先定義完成的&;#63754;屬層,以及尚未定義的via 層(或少許的&;#63754;屬層)組成。尚未定義的via 層是&;#63949;給使用者&;#63789;&;#63898;接基本&;#63763;輯單元間的&;#63898;線及基本&;#63763;輯單元內的電晶體&;#63898;線。基本&;#63763;輯單元由基本單元組成。一個好的基本單元必須要有高電晶體使用&;#63841;且可符合各種&;#63847;同需求的設計。以此基本單元設計晶片時,&;#63860;能減少設計晶片的開發工具&;#63745;為重要。 在這篇&;#63809;文&;#63976;,我們針對結構化客製晶片設計一&;#63952;似標準元件之穿孔可程式化的查表基本單元,並實作&;#63930;&;#63864;種別人所提出的架構,以及我們提出&;#63930;一種新架構,由實驗結果發現,最&;#63912;我們熟知的&;#63965;用多工器實做而成的三個輸入端結構化客製晶片查表基本單元在timing、area以及power的消耗上,&;#64038;優於其他架構。

With the advances in integrated circuit(IC) process, IC design issues that need to be handled will be more difficult. Since a chip consists of numerous pattern formational layers, mask cost becomes very large for an advanced manufacturing process. To reduce the cost of IC design and manufacturing, structured ASIC emerges as a new design alternative. A structured ASIC consists of some prefabricated transistors, prefabricated masks for some metal layers, and a couple of un-customized masks for vias (sometimes metal layers). A base block for structured ASICs must provide powerful functional expression, high integration density, and flexibility to meet various application requirements. Moreover, it should also minimize the efforts of developing tools for chip designs. We propose three implementations of 3-LUT, two are the from previous work and one is newly invented. Experimental results show that the well-known three-input lookup table (3-LUT) implemented with multiplexers achieves best timing performance, smallest area, and low power dissipation than others implementations.

ABSTRACT iv
Contents vi
List of Figures viii
List of Tables x
Chapter 1. Introduction 1
1.1.Background 1
1.2. Scope of the Work and Contributions 2
1.3. Thesis Organization 4
Chapter 2. Related Work 5
2.1. Existing VCLBs 5
2.2. VCLB for Structured ASIC 6
2.3. Via Patterned Gate Array (VPGA) 9
2.4. 4-LUTs for Structured ASIC 10
2.5. S3 Structure 11
2.6. Modified S3 Structure 12
Chapter 3. Proposed LUTs 14
3.1. Mux L3 14
3.1.1 Via Configurations 18
3.1.2 Combinational Cells 19
3.1.3 Sequential Cells 21
3.1.4 Mux L3M 22
3.2. Dual-ND L3 25
Chapter 4. Design Methodology 27
4.1 FlowMap Flow 28
4.2 Synopsys Design Compiler Flow 29
4.3 Delay Envelope 29
Chapter 5. Experimental Results 31
Chapter 6. Conclusions and Future Work 41
References 42


[1]Zvi Or-bach, “Paradigm Shift in ASIC Technology In-stand Metal Out-stand Cell,” http://www.easic.com.
[2]Behrooz Zahiri, “Structured ASICs: Opportunities and Challenges,” ICCD, pp. 404-409, 2003.
[3]J. Cong and Y. Ding, "FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs," IEEE Trans. on CAD, Vol. 13, No. 1, Jan. 1994, pp. 1-12.
[4]N. Jayakumar and S. P. Khatri, “A Metal and Via Maskset Programmable VLSI Design Methodology using PLAs,” ICCD, 2004, pp. 590–594.
[5]B. Hu, H. Jiang, Q. Liu, and M. Marek-Sadowska, “Synthesis and Placement Flow for Gain-Based Programmable Regular Fabrics,” ISPD, 2003, pp. 197–203.
[6]C. Patel, A. Cozzie, H. Schmit, and L. Pileggi, “An architectural exploration of via patterned gate arrays,” ISPD, 2003, pp. 184–189.
[7]N. V. Shenoy, J. Kawa, R. Camposano, “Design Automation for Mask Programmable Fabrics,” DAC, 2004, pp. 192-197.
[8]Y. Ran and M. Marek-Sadowska, "Designing via-configurable logic blocks for regular fabric", IEEE Trans. on VLSI Systems, Vol. 14, No. 1, Jan. 2006.
[9]L. Pileggi, et al., “Exploring regular fabrics to optimize the performance-cost trade-off,” DAC, 2004, 782-787.
[10]Mei-Chen Li, “Standard Cell Like Via-Configurable Logic Block for Structured ASICs” M. Eng. Thesis, Yuan Ze University, Taiwan, R.O.C. July 2007.
[11]V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA research,” International Workshop on Field Programmable Logic and Applications, pp. 213-222, 1997.
[12]Hou-Yu Pang, “Standard Cell Like Via-Configurable Look-Up-Table Design for Structured ASICs” M. Eng. Thesis, Yuan Ze University, Taiwan, R.O.C. July 2008.
[13]A. Koorapaty, L. Pileggi, and H. Schmit, “Heterogeneous logic block architectures for via-patterned programmable fabrics,” LNCS 2778, 2003, pp. 426–436.
[14]A. Koorapaty, V. Kheterpal, P. Gopalakrishnan, M. Fu, and L. Pileggi “Exploring logic block granularity for regular fabrics,” DATE, 2004, pp. 1468-473.
[15]M. C. Li, H. H. Tung, C. C. Lai, and R. B. Lin, “Standard cell like via-configurable logic block for structured ASICs,” ISVLSI 2008, pp.381-386.
[16]K. C. Wu and Y. W. Tsai, “structured ASIC, evolution or revolution?” ISPD, pp.103-106, 2004.
[17]HardCopy Structured ASICs: ASIC gain without the pain. http://www.altera. com/products/software/flows/asic/qts-structured_asic.html
[18]White paper, “RapidChip technology: fast custom silicon through platform-based design,” LSI Logic, 2004.
[19]T. Okamoto, T. Kimoto, and N. Maeda, “Design methodology and tools for NEC electronics’ structured ASIC ISSP,” ISPD, 2004, pp.90-96.
[20]“EDA Survey Results,” Deutsche Bank Securities, June 23, 2005.
[21]B. Zahiri, “Structured ASICs: opportunities and challenges,” ICCD, 2003, pp. 404-409.
[22]Y. Ran and M. Marek-Sadowska, “Via-configurable routing architectures and fast design mappability estimation for regular fabrics,” IEEE Trans. on VLSI Systems, Vol. 14, Sept. 2006, pp. 998-1009.
[23]F. Mo, and R. Brayton, “PLA-based regular structures and their synthesis,” IEEE Trans. on TCAD, Vol. 22, No. 6, June 2003, pp.723 - 729.
[24]N. Jayakumar and S. P. Khatri, “A metal and via maskset programmable VLSI design methodology using PLAs,” ICCD, 2004, pp. 590-594.
[25]N. V. Shenoy, J. Kawa, and R. Camposano, “Design automation for mask programmable fabrics,” DAC, 2004, pp. 192-197.
[26]D. D. Sherlekar, “Design considerations for regular fabrics,” ISPD, April 18-21,2004, pp.97-102.
[27]V. Kheterpal, et al., “Design methodology for IC manufacturability based on regular logic-bricks,” DAC, 2005, pp.192-197.
[28]A. Nakamura, M. Kawarasaki, K. Ishibashi, M. Yoshikawa, and T. Fujino, “Regular fabric of via programmable logic device using exclusive-or array (VPEX) for EB direct writing,” IEIEC Trans. Electron., Vol. E91-C, No. 4, pp. 509-516, April 2008.
[29]M. Pons, F. Moll, A. Rubio, J. Abella, X. Vera, and A. Gonz?lez, “Via-configurable transistor array: a regular design technique to improve ICs yield,” IEEE Intl. Workshop on Design for Manufacturability and Yield, 2007.
[30]S. Gopalani, R. Garg, S. P. Khatri, and M. Cheng, “A lithography-friendly structured ASIC design approach,” GLSVLSI, 2008, pp. 315-320.
[31]K. Gulati, N. Jayakumar, and S. P. Khatri, “A structured ASIC design approach using pass transistor Logic,” ISCAS, May 2007, pp. 1787-1790.
[32]N. Weste and D. Harris, CMOS VLSI Design, Third Edition, Addison Wesley, Boston, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top