跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周金生
研究生(外文):Chin-Sheng Chou
論文名稱:以溶膠凝膠法製備奈米鈦酸鹽及其在PTC熱敏電阻器之應用
論文名稱(外文):PTC thermistor of nano-titanate by Sol-gel method
指導教授:蔡平賜蔡平賜引用關係楊文都楊文都引用關係
指導教授(外文):Ping-Szu TsaiWein-Duo Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:溶膠凝膠熱敏電阻正溫度係數
外文關鍵詞:Sol-gelthermistorPTC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以溶膠凝膠法,製造高品質高純度的奈米級鈦酸鋇和鈦酸鍶粉末,然後將所合成的粉末導入現有生產PTC熱敏電阻器的生產線以製造全新的PTC熱敏電阻器。為使所用起始材料能溶解成均相的溶液,選用醋酸鋇、醋酸鍶及異丙氧化鈦等,可達到混合過程中均能處於溶液態之目的,Sol-gel法合成產出之陶瓷片較原固態法產出之陶瓷片之元素分佈細緻,較沒有元素局部集中,分散性也較好。
溶解與反應過程中需加純水及2,4-戊二酮等溶劑,溶劑含量太多,會影響生成鈦酸鋇之反應,而沒有鈦酸鋇粉末產生,加上考量減少溶劑量與能達成sol-gel之基本混合所需,所需之溶劑體積比為純水:2,4-戊二酮:二醇甲醚:乙醇= 1:0.11:0.19:0.19。
以X-光繞射分析判定:少量試做時所需煆燒溫度為900℃;在放量後,其所需煆燒溫度提高為1200℃,方能清楚觀察到其鈦酸鋇結晶相。
放量製作成PTC熱敏電阻後,其釤(Sm)含量與25℃電阻值呈正比,且具有PTC效應,然而起始原料之比例或其他製程若再做調整,應可產出其他不同需求的電氣特性。
The high quality nanoscale barium titanate (BaTiO3) and strontium titanate (SrTiO3) powders were made by Sol-gel method, and then these powders were put into the manufacture production process to fabricate brand new PTC thermistor. In order to make sure the solution can be dissolved clearly and homogeneous, the starting materials of barium acetate, strontium acetate and Titanium(IV) isopropoxide etc. were used to keep all the mixing process to be controlled under solution state. The distributions of elements for sintered ceramic produced by Sol-gel method are more homogenous than by Solid-state method.
Dissolution and reaction process were achieved by adding water, 2,4 - pentanedione and other solvents. Too much solvent will reduce the formation of crystalline barium titanium. The fewer amount of the solvents were used for Sol-gel process according to the mixing condition. The better volume ratio of solvent is that water:2,4 – pentanedione:ethylene glycol monomethyl ether:ethanol = 1:0.11:0.19:0.19。
The temperature of calcination required is 900℃at least for the trial run by X-ray diffraction analysis. But the temperature of calcination required is raised to 1200℃ at least for the pilot run. The crystalline phase of barium titanate can be observed clearly.
PTC thermistors were made by the calcinated powders. The content of Sm is proportional to the resistivity of 25℃. The ratio of raw materials and the process of production need to be adjusted to get the electric characteristics of other applications.
目錄

中文摘要 ................................................Ⅰ
英文摘要 ................................................Ⅱ
誌謝 ................................................Ⅳ
目錄 ................................................Ⅴ
表目錄 ................................................Ⅷ
圖目錄 ................................................Ⅸ
第一章 緒論...............................................1
1.1 前言.................................................1
1.2 研究動機與目的.........................................2
第二章 理論基礎............................................4
2.1 溶膠-凝膠法...........................................4
2.1.1 溶膠-凝膠法介紹......................................4
2.1.2 金屬醇鹽化合物之結構..................................6
2.2 鈦酸鋇等材料性質........................................7
2.2.1鈣鈦礦相結構..........................................7
2.2.2鈦酸鋇等材料介紹.......................................8
2.3 溶膠-凝膠法於鈣鈦礦相材料之應用..........................10
2.3.1傳統製備方法..........................................10
2.3.2溶膠-凝膠法製備.......................................11
2.4 PTC熱敏電阻器..........................................13
2.4.1 PTC熱敏電阻器介紹.....................................13
2.4.2 PTC熱敏電阻器之R-T電氣特性............................14
2.4.3 PTC熱敏電阻器特性調整................................15
第三章 實驗方法與步驟.......................................18
3.1 藥品與儀器............................................18
3.1.1 實驗藥品............................................18
3.1.2 實驗儀器與方法.......................................20
3.2 陶瓷粉末的合成.........................................23
3.2.1 Sol-gel前置溶解度測試.................................23
3.2.2 Sol-gel粉末合成......................................24
3.2.2.1 Sol-gel粉末合成之可溶性測試..........................24
3.2.2.2 使用不同溶劑比例做測試...............................25
3.2.2.3 使用不同起始原料與比例測試............................26
3.2.2.4 合成測試............................................28
3.2.3 PTC熱敏電阻製作........................................29
第四章 結果與討論.............................................30
4.1 起始原料之選擇...........................................30
4.1.1 Sol-gel前置溶解度測試 .................................30
4.1.2 Sol-gel製程溶解性比較 ..................................31
4.2 粉末合成之所需參數 .......................................33
4.3 有機溶劑添加量之影響 .....................................34
4.3.1 溶劑量多寡試驗之X-光繞射分析 ............................34
4.3.2 溶劑量微調試驗之X-光繞射、FTIR及SEM粒徑分析...............38
4.4 量化造成之影響...........................................49
4.4.1 放量測試之X-光繞射、FTIR及SEM粒徑分析....................49
4.4.2 微調比例以放量測試之X-光繞射、FTIR及SEM粒徑...............52
4.5 原固態法與sol-gel法結果之比較..............................57
4.5.1 粉末之電子顯微鏡粒徑分析.................................57
4.5.2 燒結後瓷體之圖像式成分分析...............................58
4.5.3 電氣特性比較............................................63
第五章 結論與建議..............................................64
參考文獻......................................................64
附錄一........................................................70
中英文對照表...................................................70

表目錄
表2-1 Ba、Sr等mole%組成比例 ....................................16
表2-2 Ba、Sr等mole%組成比例對應之電氣特性 .......................17
表3-1 Sol-gel前置溶解度測試材料表 ...............................23
表3-2 不同體積之溶劑一覽表 ......................................25
表3-3少量測試之起始原料一覽表.....................................26
表3-4少量測試之起始原料的差異 ....................................26
表3-5大量測試之起始原料的莫耳%一覽表 .............................27
表3-6大量測試之起始原料的差異 ....................................27
表4-1 Sol-gel前置溶解度測試結果 .................................30
表4-2 Sol之混合過程狀況比較表 ...................................32
表4-3溶劑量多寡之溶劑用量一覽表 ..................................34
表4-4溶劑量微調之溶劑用量一覽表 ..................................38
表4-5 (a)原固態法產出之陶瓷片,(b)sol-gel法合成之產出之陶瓷之SEM EDX成分分析 ...................................59

圖目錄
圖2-1 溶膠凝膠反應式 ...........................................5
圖2-2 化學計量、均勻性對前驅溶液之結構與反應性之影響................6
圖2-3 金屬醇鹽化合物之結構 ......................................7
圖2-4 鈦酸鋇在不同溫度下的晶相結構 ...............................8
圖2-5不同添加物在不同溫度下對鈦酸鋇金屬氧化物相變化之影響...........9
圖2-6 PTC熱敏電阻之R-T電氣特性曲線圖 ...........................15
圖3-1 sol-gel粉末合成之可溶性測試流程 ..........................24
圖3-2 sol-gel粉末合成流程 .....................................28
圖3-3 PTC熱敏電阻生產流程 .....................................29
圖4-1 編號a之粉料,溶劑為溶劑Ⅰ,以500、700、900℃煆燒之X-光繞射圖....35
圖4-2 編號a之粉料,溶劑為溶劑Ⅱ,以500、700、900℃煆燒之X-光繞射圖....36
圖4-3 編號a之粉料,溶劑為溶劑Ⅰ(溶劑量多)與溶劑Ⅱ(溶劑量少),以900℃煆燒之X-光繞射圖 ..............37
圖4-4 編號b之粉料,溶劑為溶劑Ⅰ,以500、700、900℃煆燒之X-光繞射圖....39
圖4-5 編號b之粉料,溶劑為溶劑Ⅰ,以500、700、900℃煆燒之FTIR圖......41
圖4-6 編號b之粉料,溶劑為溶劑Ⅰ,以(a)500℃、(b)700℃、(c)900℃煆燒之SEM粒徑圖 ..............................42
圖4-7 編號b之粉料,溶劑為溶劑Ⅲ,以500、700、900℃煆燒之X-光繞射圖.....43
圖4-8 編號b之粉料,溶劑為溶劑Ⅲ,以500、700、900℃煆燒之FTIR圖....44
圖4-9 編號b之粉料,溶劑為溶劑Ⅲ,以(a)500℃、(b)700℃、(c)900℃煆燒之SEM粒徑圖...........................45
圖4-10 編號b之粉料,溶劑為溶劑Ⅳ,以500、700、900、1000、1200℃煆燒之X-光繞射圖.............................46
圖4-11 編號b之粉料,溶劑為溶劑Ⅳ,以500、700、900、1000、1200℃煆燒之FTIR圖.................................47
圖4-12 編號b之粉料,溶劑為溶劑Ⅳ,以(a)500℃、(b)700℃、c)900℃、(d)1000、(e)1200℃煆燒之SEM粒徑圖..................48
圖4-13 編號b之粉料、溶劑為溶劑Ⅳ,將用量放大後,以500、700、900、1000、1200℃煆燒之X-光繞射圖 ....................50
圖4-14 編號b之粉料、溶劑為溶劑Ⅳ,將用量放大後,以500、700、900、1000、1200℃煆燒之FTIR圖........................50
圖4-15 編號b之粉料、溶劑為溶劑Ⅳ,將用量放大後,以(a)500℃、(b)700℃、(c)900℃、(d)1000、(e)1200℃煆燒之SEM粒徑圖.....51
圖4-16 編號c之粉料,溶劑為溶劑Ⅳ,將用量放大後,以900℃、1000℃、1200℃煆燒之X-光繞射圖 ...........................53
圖4-17 編號c之粉料,溶劑為溶劑Ⅳ,將用量放大後,以900℃、1000℃、1200℃煆燒之FTIR圖...............................53
圖4-18 編號d之粉料,溶劑為溶劑Ⅳ,將用量放大後,以900℃、1000℃、1200℃煆燒之X-光繞射圖............................54
圖4-19 編號d之粉料,溶劑為溶劑Ⅳ,將用量放大後,以900℃、1000℃、1200℃煆燒之FTIR繞射.............................54
圖4-20編號c之粉料,溶劑為溶劑Ⅳ,將用量放大後,以(a)900℃、(b)1000℃、(c)1200℃煆燒之SEM粒徑圖 .................55
圖4-21編號d之粉料,溶劑為溶劑Ⅳ,將用量放大後,以(a)900℃、(b)1000℃、(c)1200℃煆燒之SEM粒徑圖..................56
圖4-22 (a)原固態法所用之粉料粒徑,(b)sol-gel法合成之粉料粒徑......57
圖4-23 (a)原固態法產出之陶瓷片,(b)sol-gel法合成之產出之陶瓷針對Ba之圖像式成分分析........................60
圖4-24 (a)原固態法產出之陶瓷片,(b)sol-gel法合成之產出之陶瓷針對Ti之圖像式成分分析........................61
圖4-25 (a)原固態法產出之陶瓷片,(b)sol-gel法合成之產出之陶瓷針對Sr之圖像式成分分析........................62
圖4-26 sol-gel法製備PTC熱敏電阻之不同Sm比例的阻值-溫度特性曲線圖............................63
1. 祝炳和、姚堯,“PTC陶瓷製造工藝與性質”,上海大學出版社,p.1~p.10,2001。
2. 張智中,“以溶膠-凝膠法製備有機無機混成相轉移材料微膠囊”,國 立中央大學化學工程與材料工程研究所碩士論文,p.8~p.11,2006。
3. 簡雲漢,“以溶膠-凝膠法製備奈米Zr0.8Sn0.2TiO4粉末材料及其微波介電性質探討”,國立高雄應用科技大學化學工程與材料工程系碩士論文,p.12~p.15,2008。
4. N.V. Giridharan, R. Varatharajan, R. Jayavel and P. Ramasamy, “Fabrication and characterisation of (Ba,Sr)TiO3 thin films by sol–gel technique through organic precursor route”, Materials Chemistry and Physics 65, p.261~p.265, 2000.
5. C. D. Chandler, C. Roger, and M. J. Hampden-Smith, “Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors”, Chemical Reviews 93, p.1205~p.1215, 1993.
6. D. C. Bradley, “Metal alkoxides as precursors for electronic and ceramic materials”, Chemical Reviews 89, p.1317~p.1318, 1989.
7. W. Li, Z. Xu, R. Chu, P. Fu and J. Hao, “Structure and electrical properties of BaTiO3 prepared by sol–gel process”, Journal of Alloys and Compounds, 482, p.137~p.140, 2009.
8. N.V. Giridharan and R. Jayavel, “Fabrication of ferroelectric (Pb,Ba/TiO2) thin films by sol–gel technique and their characterization”, Materials Letters 52, p.57~p.61, 2002.
9. C. F. Kao and W. D. Yang, “Preparation of barium strontium titanate powder from citrate precursor”, Appl. Organometal. Chem. 13, p.383~p.397, 1999.


10. N. Konofaos, Z. Wang, S. N. Georga, C. A. Krontiras, M. N. Pisanias, J. Sotiropoulos and E. K. Evangelou, “Temperature dependence of the electrical properties of MOS devices constructed by sol gel deposited BaTiO3 films on p-Si”, Journal of Physics: Conference Series 10, p.49~p.52, 2005.
11. H. Matsuda, N. Kobayashi, T. Kobayashi, K. Miyazawa and M. Kuwabara, “Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method”, Journal of Non-Crystalline Solids 271, p.162~p.166, 2000.
12. W. Luan and L. Gao, “Influence of pH value on properties of nanocrystalline BaTiO3 powder”, Ceramics International 27, p.645~p.646, 2001.
13. I. MacLaren and C. B. Ponton, “A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution”, Journal of the European Ceramic Society 20, p.1268, 2000.
14. R. Xua, M. Shena, S. Gea, Z. Gana and W. Caob, “Dielectric enhancement of sol–gel derived BaTiO3/SrTiO3 multilayered thin films”, Thin Solid Films 406, p.113~p.117, 2002.
15. S. B. Deshpande, P. D. Godbole, Y. B. Khollam and H. S. Potdar, “Characterization of barium titanate: BaTiO3 ceramics prepared from Sol-gel derived BT powders”, Journal of Electroceramics, 15, p.103~p.108, 2005.
16. M. Nayak and T. Y. Tseng, “Dielectric tunability of barium strontium titanate films prepared by a sol–gel method”, Thin Solid Films 408, p.194~p.199, 2002.
17. K. Yao and W. Zhu, “Barium titanate glass–ceramic thin films for integrated high-dielectric media”, Thin Solid Films 408, p.11~p.14, 2002.

18. A. Hernandez, L. M. Martinez and T. Lopez, “Synthesis of Ba3Li2Ti8O20 sol–gel at basic conditions”, Materials Letters 54, p.62~p.69, 2002.
19. P. Supancic, “Mechanical stability of BaTiO3-based PTC thermistor components: experimental investigation and theoretical modelling”, Journal of the European Ceramic Society 20, p.2009~p.2024, 2000.
20. M.A. Zubair and C. Leach, “The effect of SiO2 addition on the development of low-grain boundaries in PTC thermistors”, ournal of the European Ceramic Society 30, p.107~p.112, 2010.
21. C. K. Liang and C. C. Tsa, “Evaluation of a novel PTC thermistor for telecom overcurrent protection”, Sensors and Actuators A 121, p.443~p.449, 2005.
22. K. Park, “Characteristics of porous BaTiO3-based PTC thermistors fabricated by adding graphite powders”, Materials Science and Engineering B107, p.19~p.26, 2004.
23. S. Chatterjee and H. S. Maiti, “A novel method of doping PTC thermistor sensor elements during sintering through diffusion by vapour phase”, Materials Chemistry and Physics 67, p.294~p.297, 2001.
24. J. Seaton and C. Leach, “Local property measurement in PTC thermistors”, Acta Materialia 51, p.6027~p.6034, 2003.
25. L. Afflec and C. Leach, “Microstructures of BaTiO3 based PTC thermistors with Ca, Sr and Pb additions”, Journal of the European Ceramic Society 25, p.3017~p.3020, 2005.
26. S. Chatterjee, K. Sengupta and H. S. Maiti, “A miniature PTC thermistor based sensor element fabricated by tape casting technique”, Sensors and Actuators B 60, p.155~p.160, 1999.
27. B. I. Li, D. X. Zhou, D. L. Zhang and S. L. Jiang, “Analysis on the aging characteristics of PTCR of donor-doped barium titanate”, Materials Science and Engineering B99, p.394~p.398, 2003.
28. “PTC thermistors as limit temperature sensors”, EPCOS AG 2005. , p.4, 2005.
29. Y. Nabika, T. Okamoto, T. Hirota and N. Yamamoto, “Composite material for positive temperature coefficient thermistor, ceramic for positive temperature coefficient thermistor and method for manufacturing ceramics for positive temperature coefficient thermistor”, United States Patent 6,346,496, p.3~p.4, 2002
30.B. Samuneva, D. Jambazov, D. Lepkova and Y.Dimitriev, “Sol-gel synthesis of BaTiO3 and Ba1-x-yCaySrx(ZryTi1-y)O3 perovskite powders”, Ceram. ternational., vol. 16, p.355~p.360, 1990.
31.蔡慧茹,“最適化條件合成奈米級高介電鈦酸鋇粉末之研究”,國立高雄應用科技大學化學工程系碩士班碩士論文,p.41~p.42,2004。
32 S. Doeuff, M. Henry, C. Sanchez and J. Livage, “Hydrolysis of titanium alkoxides: modification of the molecular precursor by Acetic Acid”, J.Non-Cryst. Solids., vol. 89, p.206~p.216, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top