跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聰敏
研究生(外文):Tron-min Chen
論文名稱:高效率垂直結構氮化鎵系列蕭基二極體及發光二極體元件之研究
論文名稱(外文):The Investigations of High Efficiency Vertical Structured GaN-based Schottky Barrier Diodes and Light Emitting Diodes
指導教授:王水進
指導教授(外文):Shui Jinn Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:127
中文關鍵詞:垂直結構非等向雷射蝕刻熱阻量測蕭特基二極體氮化鎵系列發光二極體即時資料擷取
外文關鍵詞:anisotropic laser etchingdata acquisition (DAQ) techniquethermal resistancevertical structureSBDsLEDsGaN-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對氮化鎵系列之蕭特基二極體(Schottky barrier diodes, SBDs)及發光二極體(light emitting diodes, LEDs)進行垂直結構化,以提昇氮化鎵系列元件之電特性、發光效率、及熱散失效果。對於垂直元件結構之表面更進一步進行適當之蝕刻處理,改變元件表面形狀,及探尋優質導電特性金屬,使元件內部之電流或發光分佈更均勻。並於元件研製完成之後進行其熱特性量測及熱行為分析。
於氮化鎵蕭基二極體方面,我們提出一種利用電鍍鎳(nickel electroplating)及雷射剝離(laser lif-off, LLO)技術完成氮化鎵蕭基二極體垂直結構化。利用電鍍鎳及雷射剝離技術,應用於氮化鎵發光二極體之垂直結構化,同樣可以達到減少元件內部電流擁擠效應及降低串聯電阻的作用,進而提升發光效率。為解決垂直結構化LEDs電流擁擠發光不均勻的問題,我們提出改變垂直結構元件表面形狀結合具有低電阻率、高透光率、匹配折射率之銦鋅氧化物(IZO)透明導電層(TCL)促使電流路徑電阻均勻化,達到電流均勻分佈之目的。首先,提出利用非等向雷射蝕刻(Anisotropic Laser Etching)漸變表面磊晶層厚度結合TCL之方法,達到電流及發光分佈均勻化之目的,實驗完成之元件所量測得到之光輸出功率(Light output power)較一般垂直發光二極體提升了38%~26%。進而提出一製程簡單、成本低廉、及可以批次作業(整批處理)之非等向ICP蝕刻技術,於GaN層製得mesa surface結構結合TCL,再利用IZO與n-GaN接面呈現蕭特基接觸特性用於電流遮蔽,可同樣達成電流及發光分佈均勻化目的。藉由此一結構設計並實驗完成之元件所量測得到之光輸出功率(Light output power)較一般垂直發光二極體提升提升了25%光輸出功率。
本論文也提出一以即時資料擷取(data acquisition, DAQ)系統進行發光二極體之接面溫度及其熱阻量測,以分析該封裝完成元件之熱阻(thermal resistance)、熱電容(thermal capacitance)、及熱等效線路模式(thermal equivalent circuit model),提出一個評估封裝完成LED元件之發熱行為模式、熱散失路徑、及熱流瓶頸之新穎方法。並利用LED接面溫度暫態曲線之響應,藉由PSPICE線路模擬以確立熱散失器之熱阻及熱電容關係。
總而言之,本研究論文除了致力於元件垂直結構化研製,進而提出結合非等向雷射蝕刻、非等向ICP蝕刻與TCL達到電流路徑電阻均勻化之目的,局部性的Ti蒸鍍使透明之IZO兼具電流擴散及電流遮蔽作用,解決了電極下方電流擁擠密集發光卻又被電極所阻擋之缺點,提升光輸出功率與發光效率;並且建構一利用即時資料擷取系統,以量測LED元件之接面溫度、熱阻、及熱行為模式分析。
In this dissertation, vertical structure GaN-based Schottky barrier diodes (SBDs) and light emitting diodes (LEDs) were investigated. Vertical-conducting GaN-based SBDs and LEDs were designed, fabricated and characterized, by means of Ni-electroplating substrate transformation in conjunction with laser lift-off technique. A real-time data acquisition (DAQ) technique was also developed for precisely characterizing the junction temperature, light output power, and thermal resistance of light emitting diodes (LEDs).
To further promote both contact and current spreading properties of GaN-based SBDs and LEDs, properly surface etching treatment to the top n-GaN layer and high quality metallic contact system were both proposed. Finally, thermal behavior and thermal model of the fabricated devices were analyzed and developed for further investigating their efficiency and reliability.
To equalize the resistance of all possible current paths in the fabricated Vertical-conducting Metal-substrate GaN-based Light-Emitting Diodes (VM-LEDs), an anisotropic laser etching to the surface layer (n-GaN) of 40-mil VM-LEDs for improving light emission uniformity and light output power is proposed and demonstrated. Typical improvement in light output power by 38-26% has been obtained. A cost effective ICP mesa etching associated with the IZO TCL was also proposed to serve both as current spreading and current blocking. In experiments, VM-LEDs with the proposed structure have been successfully fabricated and an average improvement in light output power by about 25% has also been obtained. A real-time data acquisition (DAQ) technique was developed for precisely characterizing the junction temperature, light output power, and thermal resistance of light emitting diodes (LEDs). Furthermore, by using the transient state of Tj, thermal resistance and thermal capacitance of LEDs were extracted.
Chinese abstract …… i
English abstract …… iii
Acknowledgements (Chinese) …… v
Contents…… vi
Table captions…… xiii
Figure captions…… ix
Chapter 1 Introduction
1-1Electrical properties and current progress of GaN… 1
1-2Current progress in GaN-based light-emitting diodes…4
1-3Organization of the dissertation…7
Chapter 2 Fabrication of Vertical Structure Schottky Barrier Diodes Using Electroplating Nickel Substrate
2-1substrate engineering for vertical-structured GaN-based SBDs…19
2-2Experiments and results… 24
2-3Summary…30
Chapter 3 Simulations of Current and Light Emission Distribution for VM-LEDs with Various Structure Designs
3-1ISE-TCAD simulation tool and models consideration… 53
3-2Design and simulation of various structures …57
3-3Summary…62
Chapter 4 Use of Device Structure Designs to Improve Light Output Performance of VM-LEDs
4-1Samples preparation…75
4-2Fabrication of VM-LEDs with Graded TCL/n-GaN
surface structure78
4-3Fabrication of VM-LEDs with current blocking and
mesa TCL/n-GaN surface structure…82
Chapter 5 Use of a Real-Time DAQ Technique for the Precise Measurement of Junction Temperature and Thermal Resistance of High-Power LEDs
5-1Introduction…101
5-2Motivation…103
5-3Theory background…103
5-4Experiments…104
5-5Summary…108
Chapter 6 Conclusions and future work
6-1Conclusions…121
6-2Suggestions for future work…122
Publication list…124
Vita…127
Chapter 1
[1]S. Yoshida, S. Misawa, S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire,” Appl. Phys. Lett., vol. 42, p. 427, 1983.
[2]H. Amano, N. Sawaki, I. Akasaki, Y. Touoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, p. 353, 1986.
[3]Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, “Selective growth of wurtzite GaN and AlxN on GaNand AlxGa1-xN on GaN/sapphire substrates bymetalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 144, p. 133, 1994.
[4]W. C. Peng and Y. C. S. Wu, “Multiple Relaxation Mechanisms in SrTiO3/SrRuO3 Heterostructures,” Appl. Phys. Lett., vol. 84, p. 1841, 2004.
[5]U. Zehnder, A. Weimar, U. Strauss, M. Fehrer, B. Hahn, H. J. Lugauer and V. Harle, “Emission studies of InGaN layers and LEDs grown by plasma-assisted MBE,” J. Cryst. Growth, vol. 230, p. 497, 2001.
[6]X. A. Cao and S. D. Arthur, “High-power and reliable operation of ver-.tical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, p. 3971, 2004.
[7]A. Yasan, R. McClintock, K. Mayes, S. R. Darvish, P. Kung, M. Razeghi and R. J. Molnar, “high power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett., vol. 84, p. 1046, 2004.
[8]S.J. Wang, T.M. Chen, K.M. Uang, S.L. Chen, T.S. Hsiao, S.C. Chang, H.Y. Kuo and B.W. Liou, “A Vertical-Structured Ni/GaN Schottky Barrier Diode Using Electroplating Nickel Substrate,” Jpn. J. Appl. Phys. vol. 45, no. 22, L 555, 2006.
[9]R.A. Logan. H.G. White, and W. Wiegmann, “Efficient Green Electroluminescence in. Nitrogen-Doped. GaP. p-n Junctions,” Appl. Phys. Lett.,. vol. 13, p.139, 1968.
[10]M. G. Craford, R. W. Shaw, W. O. Groves, and A. H. Herzog, “Radiative recombination mechanisms in GaAs P diodes with and without nitrogen doping,” Appl. Phys. Lett., vol. 19, p.184, 1971.
[11]J. Nishizawa, K. Suto, and T. Teshima, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions,” J. Appl. Phys., vol. 48, p.3484, 1977.
[12]R. R. Bradley, and R. M. Ash, “Metalorganic chemical vapour deposition of junction isolated GaAlAs/GaAs LED structures,” J. Crystal Growth, vol. 77, p. 629, 1986.
[13]F. A. Kish, “Highly reliable and efficient semiconductor wafer-bondedAlGaInP/GaP light-emitting diodes,” Electron. Lett., vol. 32, p.132, 1996.
[14]M. R. Krames, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl Appl. Phys. Lett., vol. 75, p. 2365, 1999.
[15]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, L1332, 1995.
[16]T. D. Moustakas, T. Lei, and R. J. Molnar, “Growth of GaN by ECR-Assisted MBE,” Physica B, vol. 185, p. 39, 1993.
[17]E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003).
[18]S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode (Springer-Verlag Berlin, 2000)
[19]Tsao, J.Y., “Solid-state lighting: lamps, chips, and materials for tomorrow,” IEEE circuits & devices, vol. 20, no. 3, p. 28, 2004.
[20]http://www.sei.co.jp/news_e/press release 2002
[21]光電科技工業協進會技術論壇http://www.display-all.com/news
[22]LEDs magazine issue 10 December 2006 http://www.ledsmagazine.com

Chapter 2:
[1]B. W. Liou, C. L. Lee, and T. F. Lei, “High breakdown voltage Schottky barrier diode using p+-polycrystalline silicon diffused guard ring,” Electron. Lett., vol. 31, p. 1950, 1995.
[2]B. W. Liou and C. L. Lee, “Characteristics of high breakdown voltage Schottky barrier diodes using p+-polycrystalline-silicon diffused-guard-ring,” Solid-State Electron, vol. 44, p. 631, 2000.
[3]S.C. Chang, S.J. Wang, K.M. Uang, and B.W. Liou, “Design and fabrication of high breakdown voltage 4H-SiC Schottky barrier diodes with floating metal ring edge terminations,” Solid-State Electron, vol. 49, p. 437, 2005.
[4]B. W. Liou, T. M. Chen, C. W. Chen, K. M. Uang, and S. J. Wang, “High Power Silicon Schottky Barrier Diodes with Different Edge Termination Structures,” Jpn. J. Appl. Phys., vol. 44, L 1244, 2005.
[5]Mehrotra, M. and B. J. Baliga, “Low forward drop JBS rectifiers fabricated using submicrontechnology,” Solid State Electron., vol. 28, p. 1089, 1985.
[6]P. G. Neudeck, R. S. Okojie, and L.Y. Chen, “High-Temperature. Electronics—A Role for Wide Bandgap Semiconductors,” Proc. IEEE vol. 90, p.1065, 2002.
[7]J. W. Graff, E. F. Schubert, and A. Osinsky, “GaN/SiC p-n mesa junctions for HBTs fabricated using selectivephotoelectrochemical etching,” Electron. Lett., vol. 37, p. 249, 2001.
[8]W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 84, p. 1841, 2004.
[9]U. Zehnder, A. Weimar, U. Strauss, M. Fehrer, B. Hahn, H. J. Lugauer, and V. Härle, “Industrial production of GaN and InGaN-light emitting diodes on SiC-substrates,” J. Cryst. Growth, vol. 230, p. 497, 2001.
[10]X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, p. 3971, 2005.
[11]A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar, “280nm UV LEDs grown on HVPE GaN substrate,” Opto-Eelcton. Rev., vol. 10, pp. 287, 2002.
[12]W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, and N.M. Johnson, “InxGa1–xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,” Appl. Phys. Lett., vol. 77, p. 2822, 2000.
[13]J. Jasinski, Z. Liliental-Weber, S. Estrada, and E. Hu, “Microstructure of GaAs/GaN interfaces produced by direct wafer fusion,” Appl. Phys. Lett., vol. 81, p. 3152, 2002.
[14]William S. Wong, Michael Kneissl, Ping Mei, David W. Treat, Mark Teepe, and Noble M. Johnson, “Fabrication of InGaN multiple-quantum-well laser diodes on copper substrates by laser lift-off,” IPAP conf. series 1, p. 883, 2000.
[15]Z.S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N.W. Cheung, and M.C.Yoo, “Enhancement of In(GaN) light-emitting diode performance by laser lift-off and transfer from sapphire to silicon,” IEEE Photonics Technol. Lett., vol. 14, p. 1400, 2002.
[16]C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, “Comparison of p-Side Down and p-Side Up GaN Light-Emitting Diodes Fabricated by Laser Lift-Off,” Jpn. J. Appl. Phys., vol. 42, L147, 2003.
[17]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, p.855, 2004.
[18]M. Braunovic, “Fretting of Nickel-Coated Aluminum. Conductors,” Proceedings of the Thirty-Sixth IEEE Holm and the Fifteenth International Conference on Electrical Contacts, p. 461, 1990.
[19]M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, p.1749 ,1996.
[20]M. K. Kelly, O. Ambacher, M. Stutzmann, M. Brandt, R. Dimitrov, and R. Handschuh, “Method of separating two layers of material from one another and electronic components produced using this process,” United States Patent 6,559,075 B1, 2003.
[21]W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of InGaN light emitting diode membranes by laser lift-off ,” Appl. Phys. Lett., vol. 75, p.1360,1999.
[22]A. Motayed, “Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, p. 7940, 2004.
[23]A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys., vol. 93, p. 1087, 2003.
[24]A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, and H. Morko, “Current mapping of GaN films by conductive atomic force microscopy,” Appl. Phys. Lett., vol. 82, p. 1890, 2003.
[25]J. Spradlin, S. Dogan, M. Mikkelson, D. Huang, L. He, D. Johnstone, and H. Morkoc, “Improvement of n-GaN Schottky diode rectifying characteristics using KOH etching,” Appl. Phys. Lett., vol. 82, p. 3556, 2003.
[26]S. Ruvimov, Z. Liliental-Weber, T. Suski, J. W. Ager III, J. Washburn, J. Kr?C. Kisielowski, E. R. Weber, H. Amano and I. Akasaki, “Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire,” Appl. Phys. Lett., vol. 69, p. 990, 1996.

Chapter 3:
[1]MDraw, Release 10.0, ISE AG, Zurich, (2004).
[2]DESSIS, Release 10.0, ISE AG, Zurich, (2004).
[3]Tecplot, Release 10.0, ISE AG, Zurich, (2004).
[4]M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE Journal of Quantum Electronics, vol. 34, no. 1, p.120,1998.
[5]C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” Journal of Lightwave Technology, vol. 4, no. 3, p. 288, 1986.
[6]C. Huh, H. S. Kim, S. W. Kim, J. M. Lee, D. J. Kim, I. H. Lee, and S. J. Park, “InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN,” J. Appl. Phys., vol. 87, p. 4464, 2000.
[7]A. Motayed, A. V. Davydov, L. A. Bendersky, M. C. Wood, M. A. Derenge, D. F. Wang, K. A. Jones, and S. N. Mohammad, “High-transparency Ni/Au bilayer contacts to n-type GaN,” J. Appl. Phys., vol. 92, p. 5218, 2002.
[8]S. Nakamura, The Blue Laser Diode (Springer, Berlin, 1997).
[9]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett., vol. 76, p. 22, 2000.
[10]S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, p. 011111, 2005.
[11]K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B.W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates,” Jpn. J. Appl. Phys., vol. 45, L 3436, 2006.
[12]S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, and C. H. Chen, “The use of transparent conducting indium-zinc oxide film as a current spreading layer for vertical-structured high-power GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 18, p. 1146, 2006.
[13]T.M. Chen, S.J. Wang, K.M. Uang, S.L. Chen, W.C. Tsai, W.C. Lee, and C.C. Tsai, “Use of anisotropic laser etching to the top n-GaN layer to alleviate current-crowding effect in vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 90, p. 041115, 2007.
[14]S.J. Wang, T.M. Chen, K.M. Uang, S.L. Chen, C.C. Tsai, B.W. Liou, and S.H. Yang, “Use of Anisotropic Laser Etching and Transparent Conducting Layer to Alleviate Current Crowding Effect in Vertical-Structured GaN-Based Light-Emitting Diodes,” IEEE Device Research Conference (DRC), June 26-28, University Park, PA, USA, 2006.
[15]T.M. Chen, S.J. Wang, K.M. Uang, S.L. Chen, C.C. Tsai, H.Y. Kou, W.C. Lee , and H. Kuan, “High Power Vertical-structure GaN-based LEDs with Improved CurrentSpreading and Blocking Designs,” IEEE Device Research Conference (DRC), June 18-20, University Notre Dame, IN, USA, 2007.

Chapter 4:
[1]S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, p. 011111, 2005.
[2]M. K. Kelly, O. Ambacher, M. Stutzmann, M. Brandt, R. Dimitrov, and R. Handschuh, “Method of separating two layers of material from one another and electronic components produced using this process,” United States Patent 6,559,075 B1, 2003.
[3]W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, p.1360, 1999.
[4]K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B.W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates,” Jpn. J. Appl. Phys., vol. 45, p. 3436, 2006.
[5]S. Tripathy, S. J. Chua, and A. Ramam, “Electronic and vibronic properties of n-type GaN: the influence of etching and annealing,” J. Phys., Condens. Matter 14, p. 4461, 2002.
[6]A. Motayed, M. Jah, A. Sharma, W. T. Anderson, C. W. Litton, and S. N. Mohammad, “Two-step surface treatment technique: Realization of nonalloyed low-resistance Ti/Al/Ti/Au ohmic contact to n-GaN,” J. Vac. Sci. Technol., B 22, p. 663, 2004.
[7]http://www.rsoftdesign.com/products/component_design/FullWAVE/pdfs/FullWAVE.pdf
[8]T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett., vol. 76, p. 3753, 2000.
[9]M. Ahmad and B.M. Arora, “Investigation of AuGeNi Contacts Using. Rectangular and Circular Transmission Line Model,” Silid-State Electron., vol. 35, p. 1441, 1992.
[10]http://www.mfa.kfki.hu/~labar/index.htm
[11]T.M. Chen, S.J. Wang, K.M. Uang, S.L. Chen, C.C. Tsai, H.Y. Kou, W.C. Lee , and H. Kuan, “High Power Vertical-structure GaN-based LEDs with Improved Current Spreading and Blocking Designs,” IEEE Device Research Conference (DRC), June 18-20, University Notre Dame, IN, USA, 2007.
[12]S.J. Wang, S.L. Chen, K.M. Uang, W.C. Lee, T.M. Chen, and C.H. Chen, “The Use of Transparent Conducting Indium–Zinc Oxide Film as a Current Spreading Layer for Vertical-Structured High-Power GaN-Based Light-Emitting Diodes,” IEEE Photo. Tech. Lett., vol. 18, p. 1146, 2006.

Chapter 5:
[1]N. Narendran and Y. Gu, “Life of LED-based white light sources,” IEEE/OSA of display Tech. 1, p. 157, 2005.
[2]I. T. Ferguson, N. Narendran, T. Taguchi, and I. E. Ashdown, Editors, “The Nature of Light:Light in Nature,” Proceedings of SPIE, 6th International Conference on Solid State Lighting 6337, p. 193, 2006.
[3]Gu Y and N. Narendran, “A Method for Projecting Useful Life of LED Lighting Systems,” Third International Conference on Solid State Lighting, Proceedings of SPIE 5187, p. 93, 2004.
[4]K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen , and B. W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates,” Jpn. J. Appl. Phys., vol. 45, p. 3436, 2006.
[5]Y. Xi, T. Gessmann, J. Xi, J. K. Kim, J. M. Shah, E. F. Schubert, A. J. Ficher, M. H. Crawford, K.H. A. Bogart, and A. A. Allerman, “Junction Temperature in Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 44, p. 7260, 2005.
[6]L. Yang, J. Hu, L. Kim, and M. W. Shin, “Variation of thermal resistance with input power in LEDs,” phys. stat. sol., vol. 6, p. 2187, 2006.
[7]M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Ggeneration Solid State Lighting Applications: Light Emitting Diodes,” Inter Society Conference on Thermal Phenomena, p. 113, 2002.
[8]John W Sofia, Analysis Tech: http://www.electronics-cooling.com/Resources/EC_Articles.
[9]Lumiled LHXL-MW1D datasheet: http://www.lumileds.com/pdfs/DS23.pdf.
[10]Lumiled Application brief AB20-4: http://www.lumileds.com.
[11]Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, p.2163, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 50. 劉正字、李文昭(1989c)速生樹種之理化學性質及膠合方法對集成材性能之影響(第九報)-相思樹、楓香、台灣杉縱向接合製作集成材之研究。林產工業8(4):75-84。
2. 48. 劉正字、李文昭(1989a)速生樹種之理化學性質及膠合方法對集成材性能之影響(第七報)-相思樹、楓香、台灣杉之基本理化學性質。林產工業8(2):15-27。
3. 47. 劉正字、李文昭(1988c)速生樹種之理化學性質及膠合方法對集成材性能之影響(第六報)-柳杉、台灣泡桐、木油桐縱向接合製作集成材之研究。中興大學農林學報37(2):81-98。
4. 46. 劉正字、李文昭(1988b)速生樹種之理化學性質及膠合方法對集成材性能之影響(第五報)-柳杉、台灣泡桐、木油桐製作集成材之研究。林產工業7(1):109-126。
5. 43. 劉正字、李文昭(1987b)速生樹種之理化學性質及膠合方法對集成材性能之影響(第二報)-杉木、山黃麻、麻六甲合歡製作集成材之研究。中華林學季刊20(4):27-40。
6. 42. 劉正字、李文昭(1987a)速生樹種之理化學性質及膠合方法對集成材性能之影響(Ⅰ)-杉木、山黃麻、麻六甲合歡之基本理化學性質。林產工業6(3):11-22。
7. 39. 廖坤福(1985)木造建築物燃燒性腐朽性缺點之改善,林產工業4(2):59-69。
8. 33. 黃彥三、熊如珍、陳欣欣(1990)打音頻譜分析應用於材質評估之可行性,林產工業9(1):43-54。
9. 30. 陳載永、陳合進(1997)應力波檢測木材縱向接合強度之彈性模數,林產工業16(1):8-21。
10. 29. 陳載永、葉政翰、鍾建有(1996)木材含水率對應力波傳遞速度與振動頻率之影響,林產工業15(3):415-424。
11. 28. 陳載永、鍾建有(1995)應力波非破壞測定法-檢測六種實木之靜曲彈性模數,林產工業14(3):363-372。
12. 25. 卓志隆(2000)應用複合振動法測定結構用製材品之彈性模數與剪斷係數,林產工業19(1):37-48。
13. 23. 吳順昭、黃彥三、高健章(1974)強制振動法木材彈性模數之測定。中華林學季刊7(2):49-55。
14. 7. 王松永(1986)柳杉及杉木之材質與利用(Ⅱ),林產工業5(1):66-76。
15. 6. 王松永(1985)柳杉及杉木之材質與利用(Ⅰ),林產工業4(4):79-88。