跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡柏崧
研究生(外文):Bo-sung Jian
論文名稱:以水熱法和濕式化學法合成五氧化二釩和摻雜氧化銅顆粒之五氧化二釩奈米線結構及其氣感特性
論文名稱(外文):Synthesis and gas sensing properties of V2O5 and CuO doped V2O5 nanowires prepared by hydrothermal and chemical wet methods
指導教授:何永鈞
指導教授(外文):Yung-Chiun Her
口試委員:林延儒蔡松雨
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:五氧化二釩奈米線水熱法氣體感測
外文關鍵詞:V2O5nanowirehydrothermalgas sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以兩階段合成法製備CuO-V2O5奈米異質結構,第一階段先藉由水熱法合成出V2O5奈米線,第二階段再利用濕式化學法將CuO奈米顆粒鑲嵌於V2O5奈米線上。藉由中斷實驗,我們仔細觀察V2O5奈米線在實驗過程中結構的演變並討論它的成長機制。實驗中合成產物的形貌、結構及組成將使用SEM、XRD、TEM儀器觀察與分析。此外也將這兩種奈米線製作成氣體感測元件並對CO與NO2氣體做感測。結果顯示,V2O5奈米線的成長是藉由OA(oriented attachment)的機制成長。先在溶液中成核形成顆粒,再成長為棒狀結構,藉著旋轉尋求表面能最低的位置而結合,最後再沿著[110]異向生長成V2O5奈米線。在氣體感測特性方面,較高溫時能夠藉由熱活化的作用,增強奈米線氣感元件對待測氣體的感測能力。另外,CuO-V2O5奈米異質結構因為具有p-n junction以及較大的比表面積,相較之下會比純的V2O5奈米線有更優相的感測能力。
In this experiment, CuO-V2O5 heterogeneous nanostructures was synthesized by a two-stages chemical process where V2O5 nanowires were synthesized by using a hydrothermal method in the first stage, and then CuO nanoparticles were decorated on the surface of V2O5 nanowires through wet-chemical reaction in the second stage. The morphologies. compositions, and crystalline structures of the as-synthesized products were characterized by SEM, XRD, and TEM. To study the growth mechanism of V2O5 nanowires, the synthesis process was terminated at different growth times and the corresponding morphologies and structures were examined. Gas sensors based on V2O5 nanowires and CuO-V2O5 heterogeneous nanostructures were fabricated to investigate their gas sensing properties to CO and NO2 gases.

The experimental results show that the growth mechanism of V2O5 nanowires is deduced to be the oriented attachment (OA) mechanism. The V2O5 nanoparticles will first nucleate in the precursor solution and then grow into nanorods. In the meantime, the growing nanorods will rotate each other to find the orientation with the lowest surface energy and attach together to from V2O5 nanowires oriented along the [110] direction. At the aspect of gas sensing properties, the gas sensitivities of the V2O5 nanowires can be enhanced as the operation temperature is increase due to the thermal activation effect. The CuO-V2O5 heterogeneous nanostructures have a better gas sensing performance than the bare V2O5 nanowires because of their larger surface-to-volume ratios and the existence of extra p-n junctions.
中文摘要 I
Abstract II
目次 III
圖目次 IV
表目次 VI
第一章 緒論 1
第二章 文獻回顧 2
2.1 氣體感測器 2
2.2 金屬氧化物半導體氣體感測機制 3
2.3 金屬氧化物半導體氣體感測器發展與目前遭遇的問題 4
2.4 五氧化二釩(vanadium pentoxide) 7
2.5 一維五氧化二釩奈米結構製備 8
2.6 氧化銅(Copper oxide) 11
2.7 鑲嵌於一維奈米材料的氧化銅奈米顆粒製備 12
2.8 研究動機與目的 14
第三章 實驗步驟 15
3.1 實驗設計 15
3.2 合成方法 16
3.2.1 V2O5奈米線制備 16
3.2.2 合成CuO decorate V2O5奈米線 16
3.3 材料特性分析 17
3.4 氣體感測元件製作與特性之量測 18
第四章 結果與討論 20
4.1 V2O5奈米線合成 20
4.1.1 溫度的影響 20
4.1.2 V2O5濃度之影響 25
4.1.3 V2O5奈米線成長機制 26
4.2 CuO-V2O5奈米異質結構 30
4.3 氣體感測特性 34
4.3.1 NO2 氣體感測特性 34
4.3.2 CO氣體感測特性 37
第五章 結論 39
參考文獻 40
1.Teoh, L. G.;Hon, Y.M.;Shieh, J.;Lai, W.H.;Hon, M.H., Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film. Sensors and Actuators B 96(2003),219-225.
2.Semancik, S.;Cavicchi, R.E., The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin solid films 206(1991),81-87.
3.Duan, X.;Huang, Y.;Cui, Y,;Wang, J.;Liber, C.M., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Letters to Nature 409(2001),66-69.
4.Cao, C.;Hu, C.;Shen, W.;Wang, S.;Wang, S.;Wang, J.;Tian, Y., Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property. Journal of alloys and compounds 550(2013),137-143.
5.Kang, M.S.;Lee, C.H.;Park, J.B.;Yoo, H.;Yi, G.C., Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 1(2012),391-400.
6.Wang, T.S.;Wang, Q.S.;Zhu, C.L.;Ouyang, Q.Y.;Qi, L.H.;Li, C.Y.;Xiao, G.;Gao, P.;Chen, Y.J., Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO PN junction nanocomposite. Sensors and Actuators B: Chemical 171(2012),256-262
7.Park, S.;Ko, H.;An, S.;Lee, W.I.;Lee, S.;Lee, C., Synthesis and ethanol sensing properties of CuO nanorods coated with In2O3. Ceramics International 39(2013),5255-5262.
8. Ogawa, H.;Masahiro N.;Atsushi A., Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. Journal of Applied Physics 53(1982),4448-4455.
9. Kim, S.S.;Park, J.Y.;Choi, S.W.;Kim, H.S.;Na, H.G.;Yang, J.C.;Lee, C.;Kim, H.W., Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization. international journal of hydrogen energy 36 (2011),2313-2319.
10. Shen, Y.;Yamazaki, T.;Liu, Z.;Meng, D.;Kikuta, T., Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. Journal of Alloys and Compounds 488(2009),121-125..
11. Haber, J.; Witko, M.;Tokarz, R., Vanadium pentoxide I. Structures and properties.Applied Catalysis A:General 157(1997),3-22.
12. Enjalbert, R.; Galy, J. A Refinement of the Structure of V2O5 Acta Crystallogr. Acta Cryst.(1986),C42,1469-1472.

13. Zavalij, Y.;Stanley Whittingham, M., Structural chemistry of vanadium oxides with open frameworks. Acta Cryst.(1999),B55,627-633.
14. Ping, L.;Se-Hee, L.;Cheong, H.M.;Tracy, C.E.;Pitts, J.R.;Smith, R.D., Stble Pd/V2O5 Optical H2 Sensor. Journal of The Electrochemical Society
(2002),149(3),H76-H80.
15. Sudant, G.;Baudrin, E.;Dunn, B.;Tarascon, J.M., Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process. Journal of The Electrochemical Society(2004),
151(5),A666-A671.
16. Spahr, M.E.;Stoschitzki-Bitterli, P.;Nesper, R.;Haas, O.;Novak, P., Vanadium Oxide Nanotubes. Journal of The Electrochemical Society(1999),146(8),2780-2783.
17. Sides, C.R.;Martin, C.R., Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Advanced Materials
(2005),125-128.
18. Capone, S.;Rella, R.;Siciliano, P.;Vasanelli, L., A comparsion between V2O5 and WO3 thin films as sensitive elements for NO detection. Thin Solid Films 350(1999),264-268.
19. Dhayal Raj, A.;Pazhanivel, T.;Suresh Kumar, P.;Mangalaraj, D.;Nataraj, D.;Ponpandian, N., Self assembled V2O5 nanorods for gas sensor. Current Applied Physics 10(2010),531-537.
20. Su, Q.;Huang, C.K.;Wang, Y.;Fan, Y.C.;Lu, B.A.;Lan, W.;Wang, Y.Y.;Liu, X.Q., Formation of vanadium oxides with various morphologies by chemical vapor deposition. Journal of Alloys and Compounds 475(2009),
518-523.
21. Cheah, Y.L.;Gupta, N.;Pramana, S.S.;Aravindan, D.;Wee, G.;Srinivasan, M., Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources 196(2011),6465-6472.
22. Satishkumar, B.C.;Govindaraj, A.; Natha, M.;. Rao, C.N.R., Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry 10(2000),2115-2119.
23. Minglang, Y.;Xueqin, L.;Yuan, W.;Youbin, Z.;Jiawang, Z.;Mingyang, L.;Wei, L.;Qing, S., Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Applied Surface Science 258(2012)9554-9558
24. Asim, N.;Radiman, S.;Yarmo, M.A.;Banaye Golriz, M.S., Vanadium pentoxide : Synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous and Mesoporous Materials 120(2009),397-401.
25. Richard, I.W., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 31(2002),230-238.
26. Ming, Z.;Haihong, Y.;Ke, Y., Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chemical Engineering Journal 188(2012),64-70.
27. Guicun, L.;Kun, C.;Hongrui, P.;Kezheng, C.;Zhikun, Z., Low-Valent Vanadium Oxide Nanostructures with Controlled Crystal Structures and Morphologies. Inorganic Chemistry 46(2007),5787-5790.
28. Liu, J.;Wang, X.;Peng, Q.;Li, Y., Vanadium Pentoxide Nanobelts
:Highly Selective and Stable Ethanol Sensor Materials. Advanced Materials 17(2005),764-767.
29. Seraphin, B.O.;Aranovich, J.;Bougnot, J.;Fahrenbruch, L.;Fischer, H.;Gerischer, H.;Graff, K.;Savelli, M.;Sievers, A.J., Solar Energy Conversion:Solid-State Physics Aspects. Applied Physics 348(1979),36145-36150.
30. Oku, T.;Motoyoshi, R.;Fujimoto, K.;Akiyama, T.;Jeyadevan, B.;Cuya, J., Structures and photovoltaic properties of copper oxide/fullerene solar cells. Journal of Physics and Chemistry of Solids 72.11(2011): 1206-121.
31. Junod, A.;Eckert, D.;Triscone, G.;Muller, J.;Reichard, W., A study of the magnetic transitions in CuO : specific heat (1-330K), magnetic susceptibility and phonon density of states. Journal of Physics: Condensed Matter 1(1989),8021-8034.
32. Forsyth, J.B.;Brown, P.J.;Wanklyn, B.M., Magnetism in cupric oxide. Journal of Physics C: Solid State Physics 21(1988),2917-2929.
33. Jun, T.;Tomoki, M.;Norio, M.;Noboru, Y., CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B 9(1992), 197-203.
34. Ramgir, N.S.;Ganapathi, S.K.;Kaur, M.;Datta, N.;Muthe, K.P.;Aswal, D.K.;Gupta, S.K.;Yakhmi, J.V., Sub-ppm H2S sensing at room temperature using CuO thin films. Sensors and Actuators B 151(2010),90-96 .
35. Kim, H.;Jin, C.;Park, S.;Kim, S.;Lee, C., H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sensors and Actuators B 161(2012),594-599.
36. Jin, C.;Kim, H.;An, S.;Lee, C., Highly sensitive H2S gas sensor based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation. Ceramics International 38(2012),5973-5978.
37. Shao, F.; Hoffmann, M. W. G., Prades, J. D., Zamani, R., Arbiol, J., Morante, J. R.;Varechkina, E.;Rumyantseva, M.;Gaskov, A.;Giebelhaus, I.;Fischer, T.;Mathur, S.;Hernandez-Ramirez, F., Heterostructured p-CuO (Nanoparticle)/n-SnO2(Nanowire) devices for Selective H2S detection. Sensors and Actuators B 181(2013),130-135 .
38. Mahato, T. H.;Singh, B.;Srivastava, A.K.;Parsad, G.K.; Srivastava, A.R.;Ganesan, K.; Vijayaraghavan, R., Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.Journal of hazardous materials 192(2011),1890-1895.
39. Whittingham, M. S.;Guo, J.D.;Chen, R.;Chirayil, T.;Janauer, G.;Zavalij, P., The hydrothermal synthesis of new oxide materials. Solid State Ionics 75 (1995), 257-268.
40. Pozarnsky, G.A.;McCormick, A.V, 51V NMR and EPR Study of Reaction Kinetics and Mechanisms in V2O5 Gelation by Ion Exchange of Sodium Metavanadate Solutions. Chemistry of materials 6.4 (1994):,380-385.
41. Alonso, B,; Livage, J., Synthesis of Vanadium Oxide Gels from Peroxovanadic Acid Solutions: A 51 V NMR Study. Journal of Solid State Chemistry 148.1 (1999), 16-19.
42. Zhang, J.; Huang, F.;Lin, Z., Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2.1 (2010), 18-34.
43. Jr, W.A.;Ribeiro, C.;Leite, E.R.;Mastelaro, R., Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. Journal of Crystal Growth 312.23 (2010):,3555-3559.
44. He, X.;Li, J.;Gao, X., Effect of V2O5 coating on NO2 sensing properties of WO 3 thin films. Sensors and Actuators B: Chemical 108.1 (2005), 207-210.
45. Rella, R.;Siciliano, P.;Cricenti, A.;Generosi, R.;Girasole, M.;Vanzetti, L.;Anderle, M.; Coluzza, C., A study of physical properties and gas-surface interaction of vanadium oxide thin films. Thin Solid Films 349.1 (1999), 254-259.
46. Thong, L.V.;Ngoc Loan, L.T.;Hieu, N.V., Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors and Actuators B: Chemical150.1 (2010),112-119.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top