1.朱佩文. 1998. 花生簇葉病病原菌質體 dnaK 和 dnaJ 基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。
2.朱俞蓉. 1998. 花生簇葉病病原菌質體 recA 基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
3.林翠淳. 1996. 植物菌質體廣效型PCR引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。
4.紀凱齡. 2003. 花生簇葉病菌質體 polC 基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
5.莊景光. 2000. 花生簇葉病病原菌質體gyrB和gyrA基因之選殖. 國立台灣大學植物病理學研究所碩士論文。6.陳紹寬. 1997. 花生簇葉病菌質體 RNA 聚合酵素Sigma Factor基因之選殖及分析.國立台灣大學植物病蟲害學研究所碩士論文。
7.黃俊霖. 1996. 絲瓜簇葉病植物菌質體可能的 ABC 轉運系統基因之分離及特性分析. 國立台灣大學植物學研究所碩士論文。8.鄧靜雯. 1999. 花生簇葉病病原菌質體 RNA 聚合酵素β 亞單位基因之選殖. 國立台灣大學植物病蟲害學研究所碩士論文。
9.魏慧珍.2000. 以逢機定序方式選殖花生簇葉病菌之質體及插入序列. 國立台灣大學植物病理與微生物學系研究所碩士論文。
10.Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687–703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
11.Ahel, D., Slade, D., Mocibob, M., Söll, D., and Weygand-Durasevic, I. 2005. Selective inhibition of divergent seryl-tRNA synthetase by serine analogues. FEBS Lett. 579: 4344–4348.
12.Allmang, c., and Krol, A. 2006. Selenoprotein synthesis: UGA does not end the story. Biochimie. 88: 1561–1571.
13.An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology. 147: 571–580.
14.Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22: 195–201.
15.Asahara, Y., Atsuta, K., Motohashi, K., Taguchi, H., Yohda, M., and Yoshida, M. 2000. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues. J. Biochem. 127: 931–937.
16.Assev, L. V., Levandovskaya, A. A., Tchufistova, L. S., Scaptsova, N. V., and Boni, I. 2008. A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo. RNA. 14: 1882–1894.
17.Bai, X., Zhang, J., Holford, I. R., and Hogenhout, S. A. 2004. Comparative genomics identifies genes shared by distantly related insect-transmitted plant pathogenic mollicutes. FEMS Microbiol. Lett. 235: 249–258.
18.Begg, K. J., Tomoyasu, T., Donachie, W. D., Khattar, M., Niki, H., Yamanaka, K., Hiraga, S., and Ogura, T. 1992. Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J. Bacteriol. 174: 2416–2417.
19.Belrhali, H., Yaremchuk, A., Tukalo, M., Larsen, K., Berthet-Colominas, C., Leberman, R., Beijer, B., Sproat, B., Als-Nielsen, J., Grubel, G. et al. 1994. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science. 263: 1432–1436.
20.Beuning, P. J., and Musier-Forsyth, K. 1999. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers. 52: 1–28.
21.Bilokapic, S., Korencic, D., Söll, D., and Weygand-Durasevic, I. 2004. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur. J. Biochem. 271: 694–702.
22.Bilokapic, S., Maier, T., Ahel, D., Gruic-Sovulj, I., Soll, D., Weygand-Durasevic, I., and Ban, N. 2006. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.EMBO. 25: 2498–2509.
23.Bilokapic, S., Plavec, J. R., Ban, N., and Weygand-Durasevic, I. 2008. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. FEBS J. 275: 2831–2844.
24.Biou, V., Yaremchuk, A., Tukalo, M., and Cusack, S. 1994. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science. 263: 1404–1410.
25.Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., and Kirkpatrick, B. C. 2001. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology. 147: 571–580.
26.Cimerman, A., Arnaud, G., and Foissac, X. 2006. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl. Environ. Microbiol. 72: 3274–3283.
27.Borel, F., Vincent, C., Leberman, R., and Härtlein, M. 1994. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Nucleic Acids Res. 22: 2963–2969.
28.Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology. 66: 598–607.
29.Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology. 68: 1733–1737.
30.Brodersen, D. E., Clemons, W. M., Jr, Carter, A. P., Wimberly, B. T., and Ramakrishnan, V. 2002. Crystal structure of 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J. Mol. Biol. 316: 725–768.
31.Brouwer, R. W., Kuipers, O. P., and van Hijum, S. A. 2008. The relative value of operon predictions. Brief. Bioinform. 9: 367–75.
32.Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471–6478.
33.Condon, C., Grunberg-Manago, M., and Putzer, H. 1996. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis. Biochimie. 78: 381–389.
34.Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L., and Driscoll, D. M. 2000.A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19: 306–14.
35.Cusacj, S., Berthet-Colominas, C., Härtlein, M., Nassar, N., and Leberman, R. 1990. A second class of thynthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5Å. Nature. 347: 249–255.
36.Cusack, S., Härtlein, M., and Leberman, R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19: 3489–3498.
37.Dam, P., Olman, V., Harris, K., Su, Z., and Xu, Y. 2007. Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res. 35: 288–298.
38.Das, A., and Ljungdahl, L. G. 1997. Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J. Bacteriol. 179: 3746–3755.
39.Denes, A. S., and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189–196.
40.Deuerling, E., Mogk, A., Richter, C., Purucker, M., and Schumann, W. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23: 921–933.
41.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259–266.
42.Dutca, L. M., and Culver, G. M. 2008. Assembly of the 5’ and 3’ minor domain of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J. Mol. Biol. 376: 92–208.
43.Feng, Liang., Sheppard, K., Namgoong, S., Ambrogelly, A., Polycarpo, C., Randau, L., Tumbula-Hansen, D., and Söll, D. 2004. RNA Biol. 1: 16–20.
44.Ganichkin, O. M., Xu, X. M., Carlson, B. A., Mix, H., Hatfield, D. L., Gladyshev, V. N., and Wahl, M. C. 2008. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. J. Biol. Chem. 283: 5849–65.
45.Garg, R.P., Qian, X. L., Alemany, L. B., Moran, S., and Parry, R. J. 2007. Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc. Natl. Acad. Sci. USA. 18: 6543–6547.
46.Gautsch, J. W., and Wullf, D. L. 1974. Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants. Genetics 77: 435–448.
47.Gollnick, P., and Babitzke, P. 2002. Transcription attenuation. Biochim. Biophys. Acta. 1577: 240–250.
48.Granger, L. L., O''Hara, E. B., Wang, R. F., Meffen, F. V., Armstrong, K., Yancey, S. D., Babitzke, P., and Kushner, S. R. 1998. The Escherichia coli mrsC gene is required for cell growth and mRNA decay. J. Bacteriol. 180: 1920–1928.
49.Guex, N., and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis. 18: 2714–2723.
50.Gundersen, D. E., and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35: 144–151.
51.Härtlein, M., and Cusack, S. 1995. Structure, fuction and evolution of seryl-tRNA synthetase: implications for the evolution of aminoacyl-tRNA synthetase and gebetic code. J. Mol. Evol. 40: 519–530.
52.Henkin, T. M., Glass, B. L., and Grundy, F. J. 1992. Analysis of the Bacillus subtilis tyrS gene: conservation of regulatory sequence in multiple tRNA synthetase gene. J. Bacteriol. 174: 3928–3935.
53.Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504–506.
54.IRPCM Phytoplasma/ Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less,non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245–1255.
55.Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267–275.
56.Jomantiene, R., Davis, R. E., Valiunas, D., Alminaite, A. and Staniulis, J. 2002. New group 16SrIII phytoplasma lineages in Lithuania exhibit interoperon sequence heterogeneity. Eur. J. Plant Pathol. 108: 507–517.
57.Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H., Sawayanagi, T., Tsuchizaki, T., Miyata, S., Ugaki, M., and Namba, S. 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant- microbe Interact. 14: 1043–1050.
58.Katz, C., and Ron, E. Z. 2008. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J. Bacteriol. 190: 7117–7122.
59.Korencic, D., Polycarpo, C., Weygand-Durasevic, I. and Söll, D. 2004. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J. Biol. Chem. 279: 48780–48786.
60.Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemuller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma ''Candidatus Phytoplasma mali''. BMC Genomics.
61.Lawrence, J. 1999. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. 9: 642–648.
62.Lee, I.-M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006a. ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593–1597.
63.Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I.-M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153–1169.
64.Lee, I.-M., Hammond, R. W., Davis, R. E., and Gundersen, D. E. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology. 83: 834–842.
65.Lee, I.-M., Zhao, Y., and Bottner, K. D. 2006b. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes. 20: 87–91.
66.Lemhard, B., Orellana, O., Ibba, M., and Weygand-Durasevic, I. 1999. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res. 1999. 27: 721–729.
67.Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59–68.
68.Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128–2130.
69.Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606–2611.
70.Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant-pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682–686.
71.Martini, M., Lee, I.-M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037–2051.
72.Matsuzawa, H., Ushiyama, S., Koyama, Y., and Ohta, T. 1984. Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia, and Ib: defect in generation of the electrochemical proton gradient. J. Bacteriol. 160: 733–739.
73.McCarthy, J. E. G., Gerstel, G., Surin, B., Wiedemann, U., and Ziemke, P. 1991. Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability. Mol. Microbiol. 5: 2447–2458.
74.McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C. Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemuller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Pages 545–640 in: R. F. Whitcomb and J. G. Tully, eds. The Mycoplasmas, Vol. V. Academic Press, San Diego, CA.
75.Miyata, S., Furuki, K., Oshima, K., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Jung, H. Y., Ugaki, M., and Namba, S. 2002. Complete nucleotide sequence of the S10-spc operon of phytoplasma: gene organization and genetic code resemble those of Bacillus subtilis. DNA Cell Biol. 21: 527–534.
76.Moreno-Hagelsieb, G., and Collado-Vides, J. 2002.A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatic. 18: 329–336.
77.Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186–187.
78.Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133–147.
79.Nesin, M., Lupski, J. R., and Godson G. N. 1988. Role of the 5’ upstream sequence and tandem promoters in regulation of the rpsU-dnaG-rpoD macromolecular synthesis operon. J. Bacteriol. 170: 5759–5764.
80.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27–29.
81.Pál, C., and Hurst, L. D. 2004. Evidence against the selfish operon theory. Trends Genet. 20: 232–234.
82.Ryckelynck, M., Giegé, R., and Frugier, M. 2005. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie. 87:835–845.
83.Santana, M., Ionescu, M. S., Vertes, A., Longin, R., Kunst, F., Danchin, A., and Glaser, P. 1994. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J. Bacteriol. 176: 6802–6811.
84.Santos, D., and Almeida, D. F. 1975. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124: 1502–1507.
85.Schäferkordt, S., and Chakraborty, T.1997. Identification, cloning, and characterization of the lma operon, whose gene products are unique to Listeria monocytogenes. J. Bacteriol. 179: 2707–2716.
86.Schlax, P. J., and Woehunsky, D. J. 2003. Translational repression mechanisms in prokaryotes. Mol. Microbiol. 48: 1157–1169.
87.Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemüller, E. 1993. Classification of plant- pathogenic mycroplasma-like organisms using restriction- site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519–527
88.Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381–3389.
89.Schneider, B., and Seemüller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409–3412.
90.Schneider, B., Gibb, K. S., and Seemüller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology. 143: 3381–3389.
91.Schneider, B., Seemüller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369–380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin, and J. G. Tully eds. Academic Press, San Diego, CA.
92.Schuwirth, B. S. Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. 2005. Structure of the bacterial ribosome at 3.5Å resolution. Science. 310: 827–834.
93.Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275–287.
94.Seemüller, E., Marcone, C., Lauer, U., Ragozzino. A., and Göschl , M. 1998. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3–26.
95.Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I.-M., Nuss, D. L., and Davis, R. E. (2006). NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193–201.
96.Shotland, Y., Teff, D., Koby, S., Kobiler, O., and Oppenheim, A. B. 2000. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. J. Mol. Biol. 299: 953–964.
97.Schumann, W. 1999. FtsH – a single chain charonin. FEMS. Microbiol. Rev. 23: 1–11.
98.Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381–3385.
99.Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenz, K.-H., Seemu¨ ller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of 16S–23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988–2993.
100.Stadtman,T. C.1996. Selenocysteine. Ann. Rev. Biochem. 65: 83–100.
101.Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842.
102.Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgrouptuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. J. Bacteriol. 190: 3979–91.
103.Vasil''eva, I. A., and Moor, N. A. 2007. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition.Biochemistry (Mosc). 72:247–263.
104.Versalovic, J., Koeuth, T., Britton, R., Geszvain, K., and Lupski, J. R. 1993. Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria. 8: 343–355.
105.Villegas, A., and Kropinski, M. A. 2008. An analysis of initiation codon utilization in the Domain Bacteria-concerns about the quality of bacterial genome annotation. Microbiology. 154: 2559–2561.
106.Wang, R. F., O’Hara, E. B. Aldea, M., Bargmann, C. I., Gromley, H., and Kushner, S. R. 1998. Escherichia coli mrsC is a allele of hflB, encoding a membrane-associated ATPase and protease that required for mRNA decay. J. Bacteriol. 180: 1929–1938.
107.Wei, W., Davis, R. E., Lee, I.-M. and Zhao, Y. 2007. Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855–1867.
108.Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368–2377.
109.Weygand-Durasević, I., Lenhard, B., Filipić, S., and Söll, D. 1996. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity. J. Biol. Chem. 271: 2455–2461.
110.Weygand-Durasevic, I., and Mocibob, M. 2008. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch. Biochem. Biophys. 470: 129–138.
111.Woese, C. R., Olsen, G. J., Ibba, M., and Söll, D 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev. 64: 202–36.
112.Wullf, D. L., and Rosenberg, M. 1983. Establishment of repressor synthesis. In: Lambda II (Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A., Eds.) pp. 53–73. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,NY.
113.Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 82: 2306–2309.
114.Yang, I. L., and Wu, S. Y. 1990. The latent period of peanut witches’ broom agent in the vector Orosius orientalis. Jour. Agric. Res. China. 39: 204–207.
115.Yang, I. L. 1988. Witches’ broom diseases of sweet potato and peanut in Taiwan. Ph. D. Thesis. Hokkaido Univ. Japan.
116.Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144: 1257–1262.