1.張立德、牟季美,奈米材料和奈米結構,第1~5頁,台中,滄海書局,民國九十一年。
2. Feynman, R., “Infinitesimal machinery,” Journal of Miroelectromechanical Systems, Vol.2, No.1, pp.4-14(1993).
3.Binnig, G., Rohrer, H., Gerber, Ch. and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy”, Vol.49, pp.57-61(1982).
4.Binnig, G. and Rohrer, H. “Scanning tunneling microscopy,” Surface Science, Vol.126, pp.236-244(1983).
5.Binnig, G., Quate, C. F. and Gerber. Ch. “Atomic force microscope,” Physical Review Letter, Vol.56, pp.930-933(1986).
6.張立德,奈米材料,第5~7頁,台北,五南書局,民國九十一年。
7.Craighead, H. G., “Nanoelectromechanical systems,” Science, Vol.290, pp.1532-1535(2000).
8.Lieber, C. M., “Nanoscale science and technology: building a big future from small things, ” MRS Bull., Vol.28, pp.486-491(2003).
9.Patolsky, F., Zheng, G and Lieber, C. M., ”Nanowire sensor for medicine and the life science,” Nanomidicine, Vol.1, pp.51-65(2006).
10. Kondo, Y. and Takayanagi, K., “Gold nanobridge stabilized by surface structure,” Physical Review Letters, Vol.79, pp.3455-3458(1997).
11.Kondo, Y. and Takayanagi, K., “Thickness induced structural phase transition of gold nanfilm,” Physical Review B, Vol.82, pp.751-754(1999).
12.Kondo, Y. and Takayanagi, K., “Synthesis and characterization of helical multi-shell gold nanowires,” Science, Vol.289, pp.606-608(2000).
13.Kizuka, T., “Atomistic visualization of deformation in gold,” Physical Review B, Vol.57, pp.11158-11163(1998).
14.Rodrigues, V., Fuhrer, T., and Ugarte, D., “Signature of atomic structure in the quantum conductance of gold nanowires,” Physical Review Letters, Vol.85, pp.4124-4127(2000).
15.Shik, A., Ruda, H. E., and Currie, I. G.,“Electromechanical and electro-optical properties of nanowires,” Journal of Applied Physics, Vol.98, pp.094306(2005).
16.Wu, B., Heidelberg, A. and Boland, J. J., “Mechanical properties of ultrahigh-strength gold nanowires,” Nature Materials, Vol.4, pp.525-529(2005).
17.Heidelberg, A., Ngo, L. T., Wu, B., Phillips, M. A., Sharma, S., Kamins, T. I., Sader, J. E., and Boland, J. J., “A generalized description of the elastic properties of nanowires,” Nano Letters, Vol.6, pp.1101-1106(2006).
18.Frenkel, D. and Smit, B., Understanding molecular simulation: from algorithms to applications, Academic Press, New York,(1996).
19.Gülseren, O., Ercolessi, F. and Tosatti, E., “Noncrystalline structures of ultrathin unsupported nanowires,” Physical Review Letters, Vol.80, pp.3775-3778 (1998).
20.Sen, P., Gülseren, O., Yildirim, T., Batra, I. P. and Ciraci, S., “Pentagonal nanowires: A first-principles study of the atomic and electronic structure,” Physical Review B, Vol.65, pp.235433(2002).
21.Wang, B., Yin, S., Wang, G., Buldum, A. and Zhao, J., “Novel structures and properties of gold nanowires,” Physical Review Letters, Vol.86, pp.2046-2049 (2001).
22.Kang, J. W. and Hwang, H. J., “An atomistic simulation study of cylindrical ultrathin Cu nanowires,” Molecular Simulation, Vol.28, pp.1021-1030(2002).
23.Diao, J., Gall, K. and Dunn, M. L., “Surface-stresss-induced phase transformation” in metal nanowires,” Nature Materials, Vol.2, pp.656-660(2003).
24.Liang, W and Zhou, M., “Shape memory effect in Cu nanowires,” Nano Letters, Vol.5, No.10, pp.2039-2043(2005).
25.Liang, W and Zhou, M., “Pseudoelasticity of single crystalline Cu nanowires through reverible lattice reorientations,” Jounal of Engineering Materials and Technology, Vol.127, pp.423-433(2005).
26.Liang, W and Zhou, M., “Atomistic simulations reveal shape memory of fcc metal nanowires,” Physical Review B,Vol.73, pp.115409(2006).
27.Park, H. S. and Ji, C., “Shape memory and pseudoelasticity in metal nanowires,” Physical Review Letters, Vol.95, pp.255504(2005).
28.Park, H. S. and Ji, C., “On the thermomechanical deformation of silver shape memory nanowires,”Acta Materialia, Vol.54, pp.2645-2654 (2006).
29.Mehrez, H. and Ciraci, S., “Yielding and fracture mechanisms of nanowires,” Physical Review B, Vol.56, pp.12632-12642(1997).
30.Komanduri, R., Chandrasekaran, N., and Raff, L. M., “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal Cubic metals at nanolevel,” International Journal of Mechanical Sciences, Vol.43, pp.2237-2260(2001).
31.Silva, E. Z. d., Silva, A. J. R. d. and Fazzio, A., “How do gold nanowires break?,” Physical Review Letters, Vol.87, pp.256102 (2001).
32.Kang, J. W. and Hwang, H. J., “Mechanical deformation study of copper nanowires using atomistic simulation,” Nanotechnology, Vol.12, pp.295-300(2001).
33.González, J. C., Rodrigues, V., Bettini, J., Rego, L. G. C. , Rocha, A. R., Coura, P. Z., Dantas, S. O., Sato, F., Galvão, D. S., and Ugarte, D., “Indication of unusual pentagonal structures in atomic-size Cu nanowires,” Physical Review Letters, Vol.93, pp.126103(2004).
34.Wang, B., Shi, D., Jia, J., Wang, G., Chen, X. and Zhao, J., “Elastic and plastic deformations of nickel nanowires under unaxial compress,” Physica E, Vol.30, pp.45-50(2005).
35.Sato, F., Moreira, A. S., Bettini, J. Coura, P. Z., Dantas, S. O., Ugarte, D. and Galvão, D. S., “ Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains,” Physical Review B, Vol.74, pp.193401(2006).
36.Park. H. S. and Zimmerman, J. A., “Modeling inelasticity and failure in gold nanowires,” Physical Review B, Vol.72, pp.054106(2005).
37.Park. H. S. and Zimmerman, J. A., “Stable nanobridge formation in <110> gold nanowires under tensile deformation,” Scripta Materialia, Vol.54, pp.1127-1132(2006).
38.Amorim, E. P. M., Silva, A. J. R. d., Fazzio, A. and Silva. E. Z. d., “Short linear atomic chains in copper nanowires,” Nanotechnology, Vol.18, pp.145701(2007).
39.Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W. L. and Goddard Ⅲ, W. A., “Strain rate induced amorphization in metallic nanowires,” Physical Review Letters, Vol.82, pp.2900-2903(1999).
40.Branício, P. S. and Rino, J. P., “Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study,” Physical Review B, Vol.62, 16950-16955(2000).
41.Wu, H. A., Soh, A. K., Wang, X. X. and Sun, Z. H., “Strength and fracture of single crystal metal nanowire,” Key Engineering Materials, Vol.261-263, pp.33-38(2004).
42.Wu, H. A., “Molecular dynamics study of the mechanics of metal nanowires at finite temperature,” European Journal of Mechanics A/Solids, Vol.25, pp.370-377(2006).
43.Wu, H. A., “Molecular dynamics study on mechanics of metal nanowire,” Mechanics Research Communications, Vol.33, pp.9-16(2006).
44.Koh, S. J. A. and Lee, H. P.,“Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects,”Physical Review B, Vol.72, pp.085414 (2005).
45.Liang, W. and Zhou, M., “Response of copper nanowires in dynamic tensile deformation,” Journal of Mechanical Engineering Science, Vol.218, pp.599-606(2004).
46.Wen, Y. H., Zhu, Z. Z. and Zhu, R. Z., “Molecular dynamics study of the mechanical behavior of nickel nanowire: strain rate effects,” Computation Materials Science, Vol.41, pp.553-560(2008).
47.Lin, Z. C. and Hung, J. C., “A study on a rigid body boundary layer interface force model for stress calculation and stress–strain behaviour of nanoscale uniaxial tension” Nanotechnology, Vol.15, pp.1509-1518(2004).
48.Wang, D., Zhou, J., Hu, S., Yin, X., Liang, S. and Deng, S., “Where, and how, does a nanowire break?,” Nano Letters, Vol.7, pp1208-1212(2007).
49.Clausius, R., “On a mechanical theory applicable to heat,” Philosophical Magazine, Series VI, Vol.40, pp.122-127(1870).
50.Koh, S. J. A. and Lee, H. P., “Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires” Nanotechnology, Vol.17, pp.3451-67(2006).
51.Koh, S. J. A. and Lee, H. P., “Shock-Induced Localized Amorphization in Metallic Nanorods with Strain-Rate-Dependent Characteristics,” Nano Letters, Vol.12, pp.2260-72006(2006).
52.Diao, J., Gall, K. and Dunn, M. L., “Yield strength asymmmetry in metal nanowires,” Nano Letters, Vol.4, pp.1863-1867(2004).
53.Diao, J., Gall, K. and Dunn, M. L., Zimmerman, J. A., “Atomistic simulations of the yielding of gold nanowires,” Acta Materialia Vol.54, pp.643-653(2006).
54.Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y. I. and Maier, H. J., “Deformation of single crystal hadfield steel by twinning and slip,” Acta Materialia, Vol.48, pp.1345-1359(2000).
55.Park, H. S., Gall K., Zimmerman J. A., “Deformation of FCC nanowires by twinining and slip,” Journal of the mechanics and physics of solds, Vol.54, pp.1862-1881(2006).
56.Ji, C. and Park, H. S., “The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires,” Nanotechnology, Vol.18, pp. 305704(2007).
57.Ji, C. and Park, H. S., “Characterizing the elasticity of hollow metal nanowires,” Nanotechnology, Vol.18, pp.115707(2007).
58.Ji, C. and Park, H. S., “Geometric effects on the inelastic deformation of metal nanowires,” Applied Physics Letters, Vol.89, pp.181916(2006).
59.Chen, D. L. and Chen, T. C., “Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics,” Nanotechnology, Vol.16, pp.2972-2981(2005).
60.McEntire, R. S. and Shen, Y. L. “An atomistic analysis of incipient metal plasticity during tensile loading” Molecular Simulation, Vol.32, pp.857-867(2006).
61.張嘉哲,單軸拉伸含三維缺陷之銅奈米線機械行為研究,國立台灣科技大學碩士論文,2007。62.Irving, J. H. and Kirkwood, J. G. “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics” Journal of chemical Physics, Vol.18, pp.817-829(1950).
63.Alder, B. J. and Wainwright, T. E., “Phase Transition for a Hard Sphere System,” Journal of chemical Physics, Vol.27, pp.1208-1209(1957).
64.Metropolis. N., Rosenbluth., A. W., Rosenbluth, M. N., Teller, A. N. and Teller. E., “Equation of state calculations by fast computing machines,” Journal of chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
65.Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992).
66.Verlet, L., “Computer “Experiment” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Reivew, Vol.159, No.1, pp.98-103(1967).
67.Quentrec, B. and Brot, C., “New method for neighbors in molecular dynamics computations,” Journal of Computational Physics, Vol.13, pp.430-432(1973).
68.Plimpton, S. “Fast prarllel algorithm for short-range molecular dynamics”, Journal of Computational Physics, Vol. 117, pp.1-19(1995).
69.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear, Vol.219, pp.84-97(1998).
70.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear, Vol.242, pp60-68(2000).
71.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Simulation of indentation and scratching of single crystal aluminum“, Wear, Vol.240, pp.113-143(2000).
72.Gannepalli, A. and Mallapragada S. K., “Atomistic studies of defect nucleation during nanoindenatation of Au(001),” Physical Review B, Vol.66, pp.1041031-1041039(2002).
73.Liang, H. Y., Woo, C. H., Hung, H., Ngan, A. H. W., and Yu, T. X., “Dislocation nucleation in the initial stage during Nanoindentation,” Philosophical Magazine, Vol.83, pp.3609-3622(2003).
74.Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M., and Nix W. D., “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol.51, pp.901-920(2003).
75.Feichtinger, D. Derlet, P. M., and Swygenhoven, H. V., “Atomistic simulations of spherical indentations in nanocrystalline gold,” Physical Review B, Vol.67, pp.024113(2003).
76.Fang, T. H., Weng, C. I., and Chang, J. G., “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Materials Science and Engineering A, Vol.357, pp.7-12(2003).
77.Fang, T. H., Jian, S. R., and Chuu, D. S., “Molecular dynamics analysis of effects of velocity and loading on the nanoindentation” Japanese Journal of Applied Physics, Vol.41, pp.L1328-L1331(2002).
78.Abrahamf, F.F., Schneider D., Land, B., Lifka, D., Skovira, J., Gerner, J. and Rosenkrantz. M., “Instabiliy dynamics in three-dimensional fracture: An atomistic simulation,” Journal of the Mechanics and Physics of Solids, Vol.45, pp.1461-1471(1997).
79.Smith, W. F., Foundation of materials science and engineering(2end en), McGraw-Hill, New York,(1994).
80.Dieter, G. E., Mechanical metallurgy, McGraw-Hill, London,(1988).
81.Kelly, A. and Macmillan, N. H., Strong solids(3rd ed.), Clarendon Press, pp.Oxford(1986).
82.Yoshida, K, Gotoh,Y. and Yamamoto, M., “The thickness dependence of plastic behaviors of copper whiskers,” Journal of the Physical Society of Japan, Vol.24, pp.1099-1107(1968).
83.Daw, M. S., Foiles, S. M. and Baskes, M. I., “The Embedded-atom method: a review of theory and applications,” Materials Science Reports, Vol.9, pp.251-310(1993).
84.Daw, S. M. and Baskes, M. I., “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review Letters., Vol.50, pp.1285-1288(1983).
85.Rosato, V., Guillope, M. and Legrand, B., “Thermodynamical and structural properties of FCC transition metals using a simple tight-binding model,” Philosophical Magazine A, Vol.59, pp.321-336(1989).
86.Cleri, F. and Rosato, V., “Tight-binding potentials for transition metals and alloys,” Physical Review B, Vol.48, pp. 22-23(1993).
87.Finnis, M. W. and Sinclair, J. E., “A simple empirical n-body potentials for transition metals”. Philosophical Magazine A, Vol.50, pp.45-55(1984).
88.Tersoff. J, “New empirical model for the structural properties of silicon,” Physical Review Letters, Vol.56, pp.632-635(1986).
89.Daw, M. S. and Baskes, M. L., “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, Vol.29, pp.6443-6453(1984).
90.Daw, M. S., “Model of metallic cohesion: The embedded-atom method,” Physical Review B, Vol.39, pp.7441-7452(1989).
91.Johnson, R. A., “Analytic Nearest-Neighbor Model for FCC Metals,” Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
92.Voter, A. F., Intermetallic compouds: Priciples, Vol.1, Wiley, New York, pp.77-90(1994).
93.Mishin Y., Farkas , Mehl, M. J. and Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations”, Physical Review B, Vol.59, pp.3393-3407(1999).
94.Gear, C. W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
95.Basinski, Z. S., Duesbery, M. S. and Taylor, R. “Influence of shear stress on screw dislocations in a model sodium lattice,” Canadian Journal of Physics, Vol.49, 2160(1971).
96.Srolovitz, D., Maeda, K., Vitek, V. and Egami, T., “Structural defects in amorphous solids statistical analysis of a computer model,” Philosophical Magazine A., Vol.44, pp.847-866(1981).
97.Miyazaki, N. and Shiozaki, S. “Calculation of mechanical properties of solids using molecular dynamics method,” JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
98.Lin, Y. C. and Pen, D. J., “Atomistic behavior analysis of Cu nanowire under uniaxial tension with maximum local stress method,” Molecular Simulation, Vol.33, pp.985-994(2007).
99.Iwaki, T., “Molecular dynamics study on stress-strain in very thin film (size and location of region for defining stress and strain),” JSME International Journal Series A, Vol.39, No.3, pp.346-353 (1996).
100.Kelchner, C. L., Plimpton, S. J. and Hamilton, J. C. “Dislocation nucleation and defect structure during surface indentation,” Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
101.Giancoli, D. C., Physics for scientists & engineers with modern physics (3rd edn), Prentice Hall, New Jersey, pp.466-469(2000).
102.Zimmerman, J. A., Gao, H. and Abraham, F. F., “Generalized stacking fault energies for embedded atom FCC metals,” Modelling and Simulaion in Material Science and Engineering, Vol.8, pp.103-115(2000).
103.Reed-Hill, R. E. and Abbaschian, R., Physical metallurgy principles, Van Nostrand, New York, (1973).
104.Cottrell, A. H., Dislocation and plastic flow in crystals, Oxford University Press(1953).
105.Hirth, J. P., Theory of dislocation(2nd ed.), Wiley, New York, pp.835-839(1982).
106.Hull, D. and Bacon, D. J., Introduction to dislocations, Butterworth-Heinemann, Oxford, pp.49-51(2001).
107.Christmann, K., Introduction to surface physical chemistry, Springr-Verlag, New York, pp.34-40(1991).
108.Guy, A. G. and Hren, J. J., Elements of physical metallurgy (3rd ed.), Massachusetts, Addison-Wesley, pp.127(1974).
109.Gall, K., Diao, J. and Dunn, M. L., “The strength of gold nanowires,” Nano Letters, Vol.4, pp.2431-2436(2004).