跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇燈城
研究生(外文):Sue, Deng-Chern
論文名稱:火用分析應用於火力發電廠系統改善效益解析研究
論文名稱(外文):Application of Exergy Analyses for Performance Improvement of Fossil Power Plant Systems
指導教授:莊嘉琛
指導教授(外文):Chuang, Chia-Chin
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:225
中文關鍵詞:火用火無氣渦輪機入口空氣冷卻複循環能源利用圖超臨界再生能源
外文關鍵詞:ExergyAnergyGas TurbineInlet Air CoolingCombined CycleEnergy Utilization DiagramSupercriticalRenewable Sources of Energy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究係以四座燃氣渦輪機發電系統的工程設計和理論火用 分析為主。發電系統的火用 分析依據熱力學第一及第二定律加以解析研究,結果證明火用 分析對電廠系統的效率預測值極為準確。電廠在部分負載運轉時,其運轉效率低於滿載運轉時的效率,若加大廢熱鍋爐的節點溫差會降低複循環電廠的效率。本論文亦分析入口空氣冷卻和燃料預熱以改善電廠性能和減少燃料耗用量,此兩種方式可有效地改善整廠的發電量及效率。一座複循環機組及一座汽電共生系統分別由氣渦輪發電機(GTG)、廢熱鍋爐(HRSG)及一台汽輪發電機(STG)所組成,其中汽電共生的汽輪機可同時抽蒸汽供給製程使用,上述系統可以做為評估能源利用的效果。
依據熱力學第一和第二定律其發電系統火用 的損失(火無 )在設計階段可加以計算且繪製出能源利用圖(EUD)。周境溫度的變化將直接影響氣渦輪發電機的出力,冷凝器的背壓變化和運轉在部分負載時將明顯地影響複循環發電機組的效率。由於目前燃料價格節節上漲,台灣地區正朝向規劃高效率的蒸汽循環系統,主要的考量為燃料價格高漲,對於提高運轉效率的獎金也相對地特別顯著,使得超臨界機組擁有熱效率高而污染排放值反而更低的優勢而更受發電業矚目。新的燃煤火力電廠均規劃為80萬瓩甚至更大容量的超臨界機組,蒸汽設計條件為24.2 MPa/566℃/593℃,現代化超臨界電廠的效率至少較次臨界機組提高約5%。同時台灣地區的再生能源如風力電廠也正在陸續規劃及興建中。
另外扼要地探討利用鍋爐連續排放的廢熱做為吸收式冰水主機熱源的可能性,且針對燃料電池及煤炭氣化的優點加以評估。本研究分析的結果可做為工程設計及規劃發電設備之選購準則。
This paper presents the engineering design and theoretical exergetic analyses of four combustion gas turbine based power generation systems. Exergy analyses for the power generation systems are performed based on the first and second laws of thermodynamics. The results show the exergy analyses can predict the plant system efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle power plant’s efficiency. This thesis analyzes inlet air-cooling and fuel preheating for improving the plant performance and reducing the fuel consumption. Both methods can effectively improve the power output and efficiency of the overall plant. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators (GTG), heat recovery steam generators (HRSG), one steam turbine generator (STG) with steam extracted for process from the cogeneration STG have been analyzed.
The energy utilization diagrams are based on the first and second laws of thermodynamics for power generation systems. The exergy loss in the system can be calculated and shown graphically during the design stages. The ambient temperature directly affects the power output of GTG. The condenser pressure and partial load operation impact the CCPP efficiency significantly. Because of the increasing fuel costs, high efficiency steam cycles are being planned in Taiwan area. The major reasons are higher fuel price, the premium that competition has placed on operating efficiency, and the inverse relationship between thermal efficiency and the emission levels of supercritical units. The new coal-fired power plants are designed as supercritical units with 800 MW or larger capacity (steam design conditions: 24.2 MPa/566℃/593℃). The modern supercritical plant efficiency is at least 5% higher than the subcritical units. By the way, the renewable sources of energy such as wind powers are being planned and erected in Taiwan.
A brief discussion of uses for the energy of the blowdown fluid is discussed. The advantages of fuel cells and the integrated gasification of coal are outlined. The analytical results are used for engineering design and component selection.
Table of Contents
Abstract i
Acknowledgement v
Table of Contents vii
Tables List xi
Figures List xiii
Photos List xv
Appendixes xvi
Legends and Symbols xvii
Chapter 1 Introduction 1
1.1 Research Motive and Purpose 1
1.2 Method of Performance Improvement for Combined Cycle Units 1
1.3 Literature Review 3
1.4 Thesis Structure 3
Chapter 2 Exergy Analysis 5
2.1 Introduction 5
2.1.1 Exergy and Anergy 6
2.1.2 Relationship between Entropy and Exergy 6
2.1.3 Exergy Loss Caused by Dissipated Energy 7
2.1.4 Pinch Point Directly Affects the Exergy Losses 8
2.2 Theoretical Analyses 9
2.2.1 Increase of Entropy Principle 10
2.2.2 Evaluation of Entropy Change 11
2.2.3 Exergy Losses in Surroundings 12
2.2.4 Exergy Application 14
2.2.5 Increasing Energy Level and Energy Quality 15
2.3 Evaluations of Power Plant Performance 17
2.3.1 Parameters of Gas Turbines Performance 17
2.3.2 Thermal Efficiency of the Combined Cycle Plant 42
2.3.3 Performance Evaluation of Power Plants 46
2.3.4 Fuel Cost Analyses 47
2.3.5 Waste Heat Utilization from Power Plants 51
2.4 Exergy Based Performance Analysis of Gas Turbines 54
2.4.1 Exergy Balance Formulations 54
2.4.2 Exergy Change and Graphical Vectors Presentation 57
2.4.3 Thermodynamics on a Two-Dimensional (2-D) Plane 58
2.4.4 Exergy Loss for Plant A 59
2.5 Results and Discussion 60
2.5.1 Rankine Cycle Irreversibility 60
2.5.2 Brayton Cycle Irreversibility 65
2.5.3 Exergy Losses Analysis of Combined Cycle Unit 66
2.6 Conclusion 75
Chapter 3 Performance Improvement and Exergy Analyses 76
3.1 Power Output Increment 76
3.1.1 ISO Definition 76
3.1.2 Power Output 77
3.2 Engineering Design 77
3.2.1 Power Plants Description 77
3.2.2 Gas Turbine Design Information 78
3.2.3 HRSG’s Economizer and Preheater Design 81
3.3 Exergy Analyses 83
3.3.1 Exergy Analyses of a CCPP 83
3.3.2 Exergy Evaluation by First and Second Laws of Thermodynamics 83
3.4 Results and Discussion 88
3.4.1 Brayton and Rankine Cycles Theoretical Efficiencies 88
3.4.2 Effect of Partial Load on CCPP Efficiency 90
3.4.3 Effect of Pinch Point on Plant Performance 96
3.4.4 Effect of Fuel Preheating on Gas Turbine Performance 98
3.4.5 Effect of Inlet Air Cooling on Gas Turbine Performance 99
3.4.6 Qualification of Cogeneration System 102
3.4.7 Effect of Exergy Efficiency with Variations of the Compressor Inlet and of the Fuel Temperatures 109
3.5 Conclusions 109
Chapter 4 Energy Utilization Diagrams and Performance 111
4.1 Introduction 111
4.2 Theory 116
4.3 Energy Utilization Diagrams 118
4.3.1 Graphical Exergy Analysis (EUD Methodology) 118
4.3.2 Graphical Exergy Evaluation of Plant A 123
4.4 Condenser Pressures and Partial Loads Effect on Performance 125
4.4.1 Performance Tests 125
4.4.2 Test Protocols 128
4.5 Results and Discussion 128
4.5.1 Energy Utilization Diagrams 128
4.5.2 Condenser Pressures and Partial Loads Effect on Plant Performance 129
4.6 Exergy Change Theory for Power Plants 134
4.7 Conclusion 135
Chapter 5 Power Plants Trends of the Next Decade 137
5.1 Development of Combined Cycle Units 137
5.2 Efficiency of Supercritical Power Plants 139
5.2.1 Development of Supercritical Units 142
5.2.2 Selection of Unit Capacity for Taiwan Area 143
5.2.3 Selection of Steam Conditions 146
5.2.4 Evaluations and Selection of Turbine Types 149
5.2.5 Supercritical Plant Thermal Efficiency 152
5.3 Renewable Sources of Energy in Taiwan 152
5.3.1 Utilizing Natural Sources of Wind Power 153
5.3.2 Potential of Solar Power Resource Development 155
5.3.3 Integrated Gasification Combined Cycle (IGCC) Technology 156
5.3.4 Fuel Cells Applied to Cogeneration Systems 160
5.3.5 Hydroelectric Power 164
5.3.6 Evaluation of Renewable Sources of Energy 165
5.4 Increase the Efficiency of the Rankine Cycle 167
5.5 Conclusion 168
Chapter 6 Conclusion 171
6.1 Brayton Cycle 171
6.2 Rankine Cycle 172
6.3 Supercritical Units 172
6.4 Fully Utilize the Waste Energy 172
6.5 Recommendations for Power Plants Performance Improvement 173
6.6 Contribution of The Thesis 174
References 176
Appendixes 179
Biography 201
References
[1] O. O. Badran, “Gas-turbine Performance Improvements”, Applied Energy, vol. 64, 1999, pp. 263-273.
[2] Y. M. Abdel-Rahim, “Exergy Analysis of Radial Inflow Expansion Turbines for Power Recovery”, Heat Recovery System &CHP, vol. 15, No. 8, 1995, pp. 775-785.
[3] D. C. Sue and C. C. Chuang, “Engineering Design and Exergy Analyses for Combustion Gas Turbine Based Power Generation System”, Energy, vol. 29, 2004, pp. 1183-1205.
[4] C. C. Chuanga and M. Ishida, “Exergy Analysis of an Absorption Heat Pump by Energy Utilization Diagrams”, Pergamon Press of a Future for Energy (FLOWERS ’90), Tokyo, Japan, 1990, pp. 309-321.
[5] C. Carcasci and B. Facchini, “Comparison Between Two Gas Turbine Solutions to Increase Combined Power Plant Efficiency”, Energy Conversion & Management, vol. 41, 2000, pp. 757-773.
[6] F. F. Huang, “Performance Evaluation of Selected Combustion Gas Turbine Cogeneration Systems Based on First and Second-Law Analysis”, Journal of Engineering for Gas Turbines and Power, vol. 112, 1990, pp. 117-121.
[7] G. P. Verkhivker and B. V. Kosoy, “On The Exergy Analysis of Power Plants”, Energy Conversion & Management, vol. 42, 2001, pp. 2053-2059.
[8] I. O. Marrero, A. M. Lefsaker, A. Razani and K. J. Kim, “Second Law Analysis and Optimization of A Combined Triple Power Cycle”, Energy Conversion & Management, vol. 43, 2002, pp. 557-573.
[9] Taiwan Power Company, “Taiwan Power Company 2003 Annual Report”, 2004; www.taipower.com.tw/5htm, Address: 242 Roosevelt Road, Sec. 3, Taipei 100, Taiwan, ROC.
[10] R. K. Tawney, D. J. Ugolini, T. J. Wengert and R. G. Narula, “Steam Cycle Selection Considerations for Combined Cycle Plant”, Proceedings of the Conference for the Joint Power Generation, Boston, Massachusetts, 1990.
[11] D. C. Sue, C. C. Chuang and P. H. Lin, “Performance Improvement for Gas Turbine Combined Cycle Power Plants (GTCCPP) in Taiwan”, Proceedings of the 4th Annual Conference & Exhibition for Electric Power, St. Louis, Missouri, 2002, pp. 1-15 (4A).
[12] C. C. Chuang, D. C. Sue and P. H. Lin, “Efficiency Improvement for Combined Cycle Power Plants: Installation of BOP System to Enhance Power Output”, Proceedings of the 6th Biennial Conference on Engineering Systems Design and Analysis (ASME), Istanbul, Turkey, 2002, pp. 1-6 (AES-008).
[13] Robert Farmer, “Gas Turbine Word for Project Planning, Design, Construction, Operation”, Vol. 23, 2003 GTW Handbook.
[14] I. S. Ondryas, D. A. Wilson, M. Kawamoto and G. L. Haub, “Options in Gas Turbine Power Augmentation Using Inlet Air Chilling”, Journal of Engineering for Gas Turbines and Power, vol. 113, 1991, pp. 203-211.
[15] R. K. Tawney, R. G. Narula, M. J. Boswell and F. DeCandia, “Power Output Enhancement Options for Combined Cycle Power Plants”, Proceedings of the Conference for International Joint Power Generation, Kansas City, Missouri, 1993.
[16] E. Bilgen, “Exergetic and Engineering Analyses of Gas Turbine Based Cogeneration Systems”, Energy, vol. 25, 2000, pp. 1215-1229.
[17] Franco Alessandro and Russo Alessandro, “Combined Cycle Plant Efficiency Increase Based on The Optimization of The Heat Recovery Steam Generator Operating Parameters”, International Journal of Thermal Sciences, vol. 41, 2002, pp. 843-859.
[18] Keith E.Herold and Reinhard Radermacher, Sanford A. Klein, “Absorption Chillers and Heat Pumps”, CRC Press, Inc., 1996.
[19] C.C Chuang, D.C. Sue and Y.T. Lin, “Simulations and Performance Analysis of LiBr/H2O for Absorption Heat Transfer Cycle System”, ASHRAE Transactions, Vol. 110, Part 2, 2004, pp. 409-416.
[20] T.W. Song, J.L. Sohn, J.H. Kim, T.S. Kim and S.T. Ro, “Exergy-based Performance Analysis of The Heavy-duty Gas Turbine in Part-load Operating Condition”, Exergy, vol. 2, 2002, pp. 105-112.
[21] Masaru Ishida, “Thermodynamics Made Comprehensible”, New York: Nova Science Publishers, Inc., 2002
[22] C.C. Chuang and D.C. Sue, “Performance Effects of Combined Cycle Power Plant with Variable Condenser Pressure and Loading”, Energy, vol. xx, 2004, pp. xxxx
[23] C.C. Chuang and D.C. Sue, “Supercritical Power Plants in Taiwan”, Proceedings of the ERAC Conference, NTUT, Taipei, 2004, pp. 5-2-1~5-2-8.
[24] Taiwan Power Company’s Chang Bin IGCC Feasibility Study Report, Taipower, Gibsin, 2002.
[25] C.H. Hsieh, “Renewable Energy Power Planning”, TPC Engineering Journal, vol. 614, 1999, pp. 24-38
[26] K. Hsu, “Renewable Energy Potential Development for Power Generation in Taiwan”, Proceedings of the National Energy Conference, Taipei, 2000
[27] A. Khaliq and S. C. Kaushik, “Second-law Based Thermodynamic Analysis of Brayton/Rankine Combined Power Cycle with Reheat”, Applied Energy, vol. 78, 2004, pp. 179-197
[28] Yousef S. H. Najjar, “Enhancement of Performance of Gas Turbine Engines by Inlet Air Cooling and Cogeneration System”, Applied Thermal Engineering, vol. 16, No. 2, 1996, pp. 163-173
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top