|
[1]A. Haque, L. Khan and M. Baron, Semi Supervised Adaptive Framework for Classifying Evolving Data Stream. Cham: Springer International Publishing, 2015, pp. 383-394. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-18032-8_30 [2]J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy data,” Machine Learning, vol. 1, no. 3, pp. 317-354, 1986. [Online]. Available: http://dx.doi.org/10.1007/BG00116895 [3]J.a. Gama, I. Žliobaitė, A.Bifet, M. Pechenizkiy, and A. Bouchachia, “A Survey on Concept Drift Adaptation,” ACM Comput. Surv., vol. 46, no. 4, pp. 44:41-44:37, Mar. 2014. [Online]. Available: http://doi.acm.org/10.1145/2523813 [4]G. Widmer and M. Kubat, “Effective Learning in Dynamic Environments by Explicit Context Tracking,” in Proceedings of the European Conference on Machine Learning, ser. ECML ''93. London, UK, UK: Springer-Verlag, 1993, pp. 227-243. [Online]. Available: http://dl.acm.org/citation.cfm?id=645323.649587 [5]A. Bifet and R. Gavaldà, Learning from Time-Changing Data with Adaptive Windowing. SIAM, 2007, pp. 443-448. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42 [6]P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ''00. New York, NY, USA: ACM, 2000, pp. 71-80. [Online]. Available: http://doi.acm.org/10.1145/347090.347107 [7]J. Gama, P. Medas, G. Castillo and P. Rodrigues, Learning with Drift Detection. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 286-295. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-28645-5_29 [8]M. Baena-Garcia, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and R. Morales-Bueno, “Early drift detection method,” in Fourth International Workshop on Knowledge Discovery from Data Streams, 2006. [9]K. Nishida and K. Yamauchi, Detecting Concept Drift Using Statistical Testing., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 264-269. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-75488-6_27 [10]D. M. dos Reis, P. Flach, S. Matwin and G. Batista, “Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-Smirnov Test,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ''16. New York, NY, USA: ACM, 2016, pp. 1545-1554. [Online]. Available: http://doi.acm.org/10.1145/2939672.2939836 [11]D. V. Hinkley, “Inference About the Change-Point in a Sequence of Random Variables,” Biometrika, vol. 57, no. 1, pp. 1-17, 1970. [Online]. Available: http://www.jstor.org/stable/2334932 [12]H. Mouss, D. Mouss, N. Mouss and L. Sefouhi, “Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system,” in 2004 5th Asian Control Conference (IEEE Cat. No.04EX904), vol. 2, Jul 2004, pp. 815-818 [13]V. M. A. Souza, D. F. Silva, J. Gama and G. E. A. P. A. Batista, Data Stream Classification Guided by Clustering on Nonstationary Environments and Extreme Verification Latency. SIAM, 2015, pp. 873-881. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.978161197010.98 [14]Y. Sakamoto, K. I. Fukui, J. Gama, D. Nicklas, K. Moriyama and M. Numao, “Concept Drift Detection with Clustering via Statistical Change Detection Methods,” in 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Oct 2015, pp. 37-42. [15]L. I. Kuncheva and W. J. Faithfull, “PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 69-80, 2014. [16]N. V. Chawla, K. W. Bowyer, L. O. Hall and W.P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16, no. 1, pp. 321-357, 2002. [Online]. Available: http://dl.acm.org/citation/cfm?id=1622407.1622416 [17]I. Tomek, “Two modifications of CNN, ” IEEE Transactions on Systems, Man, and, Cybernetics, vol. 6, pp. 769-772, Nov 1976. [18]G. E. A. P. A. Batista, A. L. C. Bazzan and M.C. Monard, “Balancing Training Data for Automated Annotation of Keywords: a Case Study,” in WOB, 2003. [19]W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for large-scale classification,” in Proceedings of Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ''01. New York, NY, USA: ACM, 2001, pp. 377-382. [Online]. Available: http://doi.acm.org/10.1145/502512.502568 [20]W. Fan, “Systematic data selection to mine concept-drifting data streams,” in Proceedings of the Tenth ACM SIGKSS International Conference on Knowledge Discovery and Data Mining, ser. KDD ''04, New York, NY, USA: ACM, 2004, pp. 128-137. [Online]. Available: http://doi.acm.org/10.1145/1014052.1014069 [21]M. Harries, U. N. cse tr, and N. S. Wales, “SPLICE-2 Comparative Evaluation: Electricity Pricing,” The University of South Wales, Tech. Rep. 1999. [22]J. A. Blackard, “UCI Machine Learning Repository: Covertype Data Set,” 1998. [Online]. Available: http://archive.ics.uci.edu/ml/datasets/covertype
|