跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱旭真
研究生(外文):Hsu-Chen Chiu
論文名稱:人類後天免疫不全病毒第一型的轉架蛋白p6*突變對蛋白酵素水解Gag蛋白的影響
論文名稱(外文):Effects of the human immunodeficiency virus type 1 transframe protein p6* mutations on the viral protease-mediated Gag processing
指導教授:王錦鈿
指導教授(外文):Chin-Tien Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:67
中文關鍵詞:人類後天免疫不全病毒轉架蛋白蛋白酵素
外文關鍵詞:human immunodeficiency virus type 1trnasframe proteinproteasep6*
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類後天免疫不全病毒第一型 (HIV-1)在形成病毒粒子後,必須經由病毒的蛋白酵素 (protease; PR)水解為成熟且具感染力的病毒粒子。蛋白酵素是經由Pol蛋白所衍生的產物,Pol與Gag蛋白以同一條的mRNA為模板被製造出來,在合成Pr55gag發生核糖體往前移位( -1 ribosomal frameshift )跳至Pol 蛋白的open reading frame,使Pol蛋白以一個160 kDa的Gag-Pol聚合蛋白被表現出來。在Pr160gag-pol上的Gag蛋白C端p1與p6已不存在取而代的是另ㄧ個稱為轉架蛋白 ( transframe; p6*; p6pol )。In vitro的研究發現刪除掉p6*可以增強蛋白酵素水解Gag蛋白的能力。因此,認為p6*具有調控蛋白酵素的能力。為了研究p6*對於病毒蛋白酵素活化的影響,我們在Gag-Pol聚蛋白內的p6*區域建構一系列的突變包括刪除p6*,將這些突變的質體與HIV-1 Gag蛋白的表現質體共同轉染293T細胞來觀察病毒粒子的組裝與水解。結果顯示,在Gag-Pol刪除掉p6*對蛋白酵素水解Gag蛋白的能力有些許影響,但如Gag-Pol上刪除Gag或保留完整的p6gag條件下,此時刪除p6*則會降低蛋白酵素水解Gag蛋白能力。而阻斷p6*/PR的切離則明顯降低蛋白酵素水解Gag蛋白的能力,這些實驗的結果暗示p6*的存在也許可以幫助蛋白酵素的活化,如增強Gag-Pol的二聚體化 (dimerization),但活化中的蛋白酵素必需將p6*從蛋白酵素切離,蛋白酵素才能發揮全面的酵素活性。
The maturation of human immunodeficiency virus particles mediated by viral protease (PR) is not required for virus assembly but is essential for viral infectivity. The PR is encoded by the pol gene, which partially overlaps with the gag open reading frame and is translated as a Gag-Pol polyprotein precursor. Within the Gag-Pol, the C-terminal Gag cleavage product p6gag is truncated and replaced by a transframe peptide referred to as p6* or p6pol. The p6* separates the Gag nucleocapsid (NC) domain from PR. Removal of the p6* can improve HIV Gag processing in vitro,
suggesting that the p6* is involved in the regulation of protease activation. To investigate the contribution of p6* to virus particle maturation, a series of Gag-Pol constructs with various mutations in the p6* was engineered. Effects of the p6* mutations on virus particle assembly and processing were analyzed by coexpressing each of the p6* mutants with an HIV-1 Gag precursor expression plasmid in 293T cells. Analysis indicated that the deletion mutations in p6* markedly affect virus infectivity although Western blot analyses suggested that the deletion mutations have no significant effects on the PR-mediated Gag processing.
However, negative effects of the p6*-deletion mutations on PR-mediated virus particle processing were readily observed when the upstream gag coding sequence had been deleted or an intact C-terminal p6gag was present. Consistent with the previous reports, mutations blocking p6*/PR cleavage significantly affected PR activity. These results suggest that the presence of p6* is required during the process of PR activation; however, the p6* needs to be removed eventually in order to obtain a fully functional PR.
Aldovini, A. & Young, R. A. (1990). Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64, 1920-1926.
Barre-Sinoussi, F., Chermann, J. C. & Rey, F. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868-871.
Beissinger, M., Paulus, C., Bayer, P., Wolf, H., Rosch, P. & Wanger, R. (1996). Sequence-specific resonance assignments of the 1H-NMR spectra and structural characterization in solution of the HIV-1 transframe protein p6. Eur J Biochem 237, 383-392.
Bleiber, G., Peters, S., Martinez, R., Cmarko, D., Meylan, P. & Telenti, A. (2004). The central region of human immunodeficiency virus type 1 p6 protein (Gag residues S14-I31) is dispensable for the virus in vitro. Journal of General Virology 85, 921-927.
Bushman, F. D., Fujiwara, T. & Craigie, R. (1990). Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555-1558.
Candotti, D., Chappey.C., Rosenheim, M., M'Pele, P., Huraux, J. M. & Agut, H. (1994). High variability of the gag/pol transframe region among HIV-1 isolates. C R Acad Sci III 317, 183-189.
Capon, D. J. & Ward, R. H. (1991). The CD4-gpl20 Interaction and Aids Pathogenesis. Annual Review of Immunology 9, 649-678.
Chen, S. W., Chiu, H. C., Liao, W. H., Wang, F. D., Chen, S. S. & Wang, C. T. (2004). The virus-associated human immunodeficiency virus type 1 Gag-Pol carrying an active protease domain in the matrix region is severely defective both in autoprocessing and in trans processing of gag particles. Virology 318, 534-541.
Chiu, H. C., Yao, S. Y. & Wang, C. T. (2002). Coding sequences upstream of the human immunodeficiency virus type 1 reversetranscriptase domain in Gag-Pol are not sssential for incorporation of the Pr160gag-pol into virus particles. J Virol 76, 3221-3231.
Clavel, F., Guetard, D., Brun-Vezinet, F. & other authors (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 223, 343-346.
Coffin, J., Haase, A., Levy, J. A. & other authors (1986). Human immunodeficiency viruses. Science 232, 687.
Costa, L. J., Zheng, Y. H., Sabotic, J., Mak, J., Fackler, O. T. & Peterlin, B. M. (2004). Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 78, 5311-5323.
Davies, D. R. (1990). The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19, 189-215.
Dorfman, T., Mammano, F., Haseltine, W. A. & Gottlinger, H. G. (1994). Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68, 1689-1696.
Engelman, A., Muizuuchi, K. & Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221.
Freed, E. O. (1998). HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251, 1-15.
Freed, E. O. (2001). HIV-1 replication. Somatic Cell Mol Genet 26, 13-33. Gallo, R. O., Sarin, P. S., Gelmann, E. P. & other authors (1983). Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220, 865-867.
Gonda, M. A., Wong-Staal, F., Gallo, R. C., Clements, J. E., Narayan, O. & Gilden, R. V. (1985). Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227, 173-177.
Gottlinger, H. G., Sodroski, J. G. & Haseltine, W. A. (1989). Role of capsid precursor processing and myristoylation in morphogenesis and nfectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences USA 86, 5781-5785.
Graham, R., ven den Eb A. & Haseltine.WA (1973). A new technology for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456-467.
Huang, M., Orenstein, J. M., Martin, M. A. & Freed, E. O. (1995). p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69, 6810-6818.
Hwang, S. S., Boyle, T. J. & Lyerly, K. (1991). dentification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253, 71-74. James, M. N. & Sielecki, A. R. (1986). Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature 319, 33-38.
Karacostas, V., Wolffe, E. J., Nasgshima, K., Gonda, M. A. & Moss, B. (1993). Overexpression of the HIV-1 Gag-Pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193, 661-671.
Katz, R. A. & Skalka, A. M. (1994). The retroviral enzymes. Annual Review of Biochemistry 63, 133-173.
Liao, W. H. & Wang, C. T. (2004). Characterization of human immunodeficiency virus type 1 Pr160 gag-pol mutants with truncations downstream of the protease domain. Virology 329, 180-188.
Louis, J. M., Dyda, F., Nashed, N. T., Kimmel, A. R. & Davies, D. R. (1998). Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37, 2105-2110.
Louis, J. M., Nashed, N. T., Parris, K. D., Kimmel, A. R. & Jerina, D. M. (1994). Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein. Proceedings of the National Academy of Sciences USA 91, 7970-7974.
Ono, T., Iwatani, Y., Nishimura, A., Isdimoto, A. & Sakai, H. (2000). Functional association between the nef gene product and gag-pol region of HIV-1. FEBS Lett 466, 233-238.
Oroszlan, S. & Lufting, R. B. (1990). Retroviral proteinases. Curr Top Microbiol Immunol 157, 153-185. Page, K. A., Landau, N. R. & Littman, D. R. (1990). Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64, 5270-5276. Partin, K., Zybarth, G., Ehrlich, L., DeCrombrugghe, M., Wimmer, E. & Carter, C. (1991). Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences USA 88, 4776-4780.
Paulus, C., Ludwig, C. & Wagner, R. (2004). Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Virology 330, 271-283.
Paulus, C., Hellebrand, S., Tessmer, U., Wolf, H., Krausslich, H. G. & Wagner, R. (1999). Competitive inhibition of human immunodeficiency virus type-1 protease by the Gag-Pol transframe protein. J Biol Chem 274, 21539-21543.
Paxton, W., Connor, R. I. & Landau, N. R. (1993). Incorporation of Vpr into human immunodeficiency virus type 1 virons: Requirement for p6 region of gag and mutational analysis. J Virol 67, 7229-7237.
Peliska, J. A. & Benkovic, S. J. (1992). Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258, 1112-1118.
Pettit, S. C., Henderson, G. J., Schiffer, C. A. & Swanstrom, R. (2002). Replacement of the p1 amino acid of human immunodeficiency virus type 1 gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 76, 10226-10233.
Ratner, J., Haseltine, W., Patarca, R. & other authors (1985). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277-284.
Starcich, S., Ratner, L., Josephs, S. F., Okamoto, T., Gallo, R. C. & Wong-Staal, F. (1985). Characterization of long terminal repeat sequences of HTLV-III. Science 227, 538-540.
Swanstron, R. & Wills, J. W. (1997). Synthesis, assembly, and processing of viral proteins. In Retrovituses, pp. 263-334. Edited by M.Coffin, S.H.Hughes & H.E.Varmus and Eds.edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Tessmer, U. & Krausslich, H. G. (1998). Cleavage of human immunodeficiency virus type 1 proteinase from the N-terminallyadjacent p6* protein Is essential for efficient Gag polyprotein processing and viral infectivity. J Virol 72, 3459-3463.
Votg, V. M. (1997). Retroviral virons and genomes. In Retroviruses, pp. 27-70. Edited by Coffin, M., Hughes, S. H., Varmus, H. E. & Eds.edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Wang C-T & Barklis, E. (1993). Assembly, processing, and infectivity of human immunodeficiency virus type 1gag mutants. J Virol 67, 4264-4367.
Weber, I. T. (1990). Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J Biol Chem 265, 10492-10496. Whitehurst, N., Chappey, C., Petropoulos, C., Parkin, N. & Gamarnik, A. (2003). Polymorphisms in p1-p6/p6* of HIV Type 1 Can Delay Protease Autoprocessing and Increase Drug Susceptibility. AIDS Research and Human Retroviruses 19, 779-784.
Wills, J. W. & Craven, R. C. (1991). Form, function, and use of retroviral gag proteins. AIDS 5, 639-654.
Wondrak, E. M., Nashed, N. T., Haber, M. T., Jerina, D. M. & Louis, J. M. (1996). A transient precursor of the HIV-1 protease. J Biol Chem 271, 4477-4481.
Yee, J. K., Friedmann, T. & Burns, J. C. (1994). Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43, 99-112.
Yu, X., Yuan, X., Matsuda, Z., Lee, T. H. & Essex, M. (1992). The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66, 4966-4971. Zybarth, G. & Carter, C. (1995). Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol 69, 3878-3884.
Zybarth, G., Krausslich, H. G., Partin, K. & Carter, C. (1994). Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. J Virol 68, 240-250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top