跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦俊傑
研究生(外文):Chin, Chun-Chieh
論文名稱:垂直堆疊N型多晶矽無接面奈米線電晶體及其串聯電阻
論文名稱(外文):Vertically Stacked n-Type Poly-Si Junctionless Nanowire Transistor and Its Series Resistance
指導教授:趙天生
指導教授(外文):Chao, Tien-Sheng
口試委員:張廖貴術林鴻志陳振芳
口試委員(外文):Chang-Liao, Kuei-ShuLin, Horng-ChihChen, Jenn-feng
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:47
中文關鍵詞:垂直堆疊多晶矽無接面奈米線串聯電阻閘極全環繞
外文關鍵詞:Vertically StackedPoly-SiJunctionlessNanowireSeries ResistanceGate-All-Around
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
垂直堆疊奈米線電晶體被視為最具有潛力實現三維積體電路的元件。在本篇研究中,垂直堆疊奈米線電晶體搭配低熱預算的高介電係數氧化層金屬閘極也被成功製作出來。然而,對於垂直堆疊的結構而言,隨著堆疊層數增加其開啟電流(Ion)不成比例上升的現象也以實驗驗證出來。
首先,奈米線是否可以完全懸空及其經過熱處理過後的基本電特性比較已被完整探討。其中,RTA_500℃_H2/N2_30s這個條件其開啟電流可以由0.81uA增加到1.02uA同時使臨界電壓(Vt)及最低關閉電流(Imin)保持不變。另一方面,次臨界擺幅(subthreshold slope,S.S.)及汲極引致能障下降(DIBL)也分別由278mV/dec到226mV/dec。最後,由水平多通道歸一化的後的串連電阻值可以發現其值約在5x105Ω-um。這結果顯示出水平多通道的開啟電流是可以被線性提升的。
接下來,垂直堆疊奈米線電晶體搭配低熱預算的高介電係數氧化層金屬閘極已被成功製作出來。由電性結果可以發現單位截面積下的電流可以隨層數上升而有效地增加,由1.24uA到1.83uA。然而,次臨界擺幅(subthreshold slope,S.S.)及汲極引致能障下降(DIBL)則會有些微的劣化。另一方面,介電層沉積後熱退火(PDA)與介電層沉積後電漿氧化(PPO)的比較也以實驗證實。由電性分析可以發現因為較好的介面特性導致PDA的開啟電流1.22uA比PPO的1.02uA高。且次臨界擺幅(subthreshold slope,S.S.)及汲極引致能障下降(DIBL)也因為較好的介面特性而有顯著改善,由370mV/dec 到 143mV/dec。此外,利用三種不同的方法來分析垂直堆疊結構的串聯電阻議題也以實驗結果展示。由於底層的元件比上層的元件其載子需要跑更遠的距離,導致堆疊結構的電流無法隨層數增加而線性提升。
最後,綜合以上研究結果
(一) 水平多通道的結構並不會受到串聯電阻的影響,因此其開啟電流可以隨通道增加而線性上升。
(二) 垂直堆疊的結構可以有效地增加單位面積下的開啟電流但會伴隨著些微次臨界擺幅(subthreshold slope,S.S.)及汲極引致能障下降(DIBL)的劣化。
(三) 對於堆疊結構而言,底層的載子傳輸需要較遠的距離導致其串聯電阻較大。因此單位面積下的開啟電流無法隨層數上升而等比例的增加。
Vertically stacked nanowire transistors are considered as the most promising candidate to fulfill the concept of three dimensional integrated circuits. In this research, the vertically stacked nanowire transistor has been successfully fabricated. Moreover, the high-k metal gate was introduced owing to the merits of low thermal budgets. However, the disproportional phenomenon of drive current enhancement with increment of layers caused by the series resistance issue for vertically stacked structure has been experimentally addressed.
First of all, the fully suspended nanowire transistor was successfully fabricated for demonstration purpose and the electrical transfer characteristics with four different thermal treatments were also discussed. For RTA_500℃_H2/N2_30s, the drive current (Ion) under the same over-drive of 2V improves from 0.81uA to 1.02uA. Furthermore, this condition also leaves the threshold voltage and Imin unchanged. On the other hand, the subthreshold characteristics of S.S. and DIBL also improves from 278mV/dec to 226mV/dec, respectively. Finally, the normalized series resistance for channel counts of 2, 10 and 20 is nearly the same and the value is around A, B and C respectively. Therefore, the drive current can be enhanced proportionally.
Next, the vertically stacked nanowire transistor was fabricated with the introduction of high-k metal gate for low thermal budget purpose. The drive current per footprint can be effectively enhanced with the increment of layers from 1.24uA to 1.83uA. However, the subthreshold characteristics of S.S. and DIBL were slightly degraded with the increment of layers. Moreover, the comparison between PDA and PPO treatment were also conducted. The drive current (ID) of PDA of 1.22uA is higher than PPO of 1.02uA due to the interface quality and improved subthreshold swing under the same over drive of 2V. Moreover, the subthreshold characteristics of S.S. and DIBL also improves from 370mV/dec to 143mV/dec, respectively. Eventually, the series resistance issue was experimentally demonstrated by three different approaches. The analysis shows that the series resistance of bottom layer is definitely larger than upper layer which cause the disproportional phenomenon of drive current enhancement with the increment of layers.
Chapter 1 Introduction 1
1.1 General Background 1
1.1.1 Trend of Three-Dimensional Integrated Circuits 1
1.1.3 Junctionless Transistors 2
1.1.4 Performance Boosters 3
1.1.5 Vertically Stacked Nanowire Transistors
with High-k Metal Gate Structure 4
1.1.6 Method of device parameter extraction 6
1.2 Motivation 6
1.3 Organization of the Research 7
Chapter 2 Investigation of Fully Suspended Nanowire Transistor
with Additional Nitride Layer 11
2.1 Introduction 11
2.2 Experimental Procedure of Fully Suspended Nanowire 11
2.3 Characteristics of Fully Suspended Nanowire Transistor
with Additional Nitride Layer 11
2.3.1 Characteristics of fully suspended nanowires
with horizontal multiple channel 12
2.4 Characteristics of Fully Suspended Nanowire Transistor
with thermal treatment 12
2.4.1 Characteristics of fully suspended nanowires
with thermal treatments 12
2.5 Summary 13

Chapter 3 Study on Vertically Stacked Nanowire Transistor
with High-k Metal Gate Structure 23
3.1 Introduction 23
3.2 Experimental Procedure of Vertically Stacked Nanowire 24
3.3 Characteristics of Vertically Stacked Nanowire
with high-k metal gate structure 24
3.3.1 The comparison between single layer and dual layer
with PDA treatments 24
3.3.2 Characteristics of Vertically Stacked Nanowire
with PPO/PDA Treatment 25
3.4 Series resistance issue for vertically stacked nanowire transistor 26
3.5 Summary 27
Chapter 4 Conclusion and Future Work 42
4.1 Conclusion 42
4.2 Future Work 42
[1] Hsieh, D. R., Lin, J. Y., Kuo, P. Y., & Chao, T. S. (2016). High-Performance Pi-Gate Poly-Si Junctionless and Inversion Mode FET. IEEE Transactions on Electron Devices, 63(11), 4179-4184.
[2] P.-Y. Kuo, J.-Y. Lin, and T.-S. Chao, "Implantation free GAA double spacer poly-Si nanowires channel junctionless FETs with sub-1V gate operation and near ideal subthreshold swing," in Electron Devices Meeting (IEDM), 2015 IEEE International, 2015, pp. 6.3. 1-6.3. 4: IEEE.
[3] P.-Y. Kuo, J.-Y. Lin, and T.-S. Chao, "Implantation free GAA double spacer poly-Si nanowires channel junctionless FETs with sub-1V gate operation and near ideal subthreshold swing," in Electron Devices Meeting (IEDM), 2015 IEEE International, 2015, pp. 6.3. 1-6.3. 4: IEEE.
[4] P.-Y. Kuo, Y.-H. Lu, and T.-S. Chao, "High-performance GAA sidewall-damascened sub-10-nm in situ n+-doped poly-Si NWs channels junctionless FETs," IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3821-3826, 2014.
[5] J.-P. Colinge et al., "Nanowire transistors without junctions," Nature nanotechnology, vol. 5, no. 3, pp. 225-229, 2010.
[6] T. Ernst et al., "Novel 3D integration process for highly scalable Nano-Beam stacked-channels GAA (NBG) FinFETs with HfO2/TiN gate stack," in Electron Devices Meeting, 2006. IEDM'06. International, 2006, pp. 1-4: IEEE.
[7] L. K. Bera et al., "Three dimensionally stacked SiGe nanowire array and gate-all-around p-MOSFETs," in Electron Devices Meeting, 2006. IEDM'06. International, 2006, pp. 1-4: IEEE.
[8] H. Mertens et al., "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," in VLSI Technology, 2016 IEEE Symposium on, 2016, pp. 1-2: IEEE.
[9] Y.-C. Cheng, H.-B. Chen, C.-Y. Chang, C.-H. Cheng, Y.-J. Shih, and Y.-C. Wu, "A highly scalable poly-Si junctionless FETs featuring a novel multi-stacking hybrid P/N layer and vertical gate with very high Ion/Ioff for 3D stacked ICs," in VLSI Technology, 2016 IEEE Symposium on, 2016, pp. 1-2: IEEE.
[10] T.-J. King, "Trends in polycrystalline-silicon thin-film transistor technologies for AMLCDs," in Active Matrix Liquid Crystal Displays, 1995. AMLCDs' 95., Second International Workshop on, 1995, pp. 80-86: IEEE.
[11] F. Hayashi and M. Kitakata, "A high performance polysilicon TFT using RTA and plasma hydrogenation applicable to highly stable SRAMs of 16 Mbit and beyond," in VLSI Technology, 1992. Digest of Technical Papers. 1992 Symposium on, 1992, pp. 36-37.
[12] S. Koyama and T. Jinbo, "A novel cell structure for EPROMs and flash memories using polysilicon TFT," NEC research & development, vol. 34, no. 1, pp. 70-76, 1993. [13] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, "400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers," IEEE Transactions on Electron Devices, vol. 38, no. 5, pp. 1086-1093, 1991.
[14] M. Clark, "Current status and future prospects of poly-Si devices," IEE Proceedings-Circuits, Devices and Systems, vol. 141, pp. 3-8, 1994.
[15] S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semiconductor Science and Technology, vol. 10, pp. 721-738, 1995.
[16] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, "Floating body effects in polysilicon thin-film transistors," IEEE Transactions on Electron Devices, vol. 44, pp. 2234-2241, 1997.
[17] C.-T. Sah, R. N. Noyce, and W. Shockley, "Carrier generation and recombination in pn junctions and pn junction characteristics," Proceedings of the IRE, vol. 45, no. 9, pp. 1228-1243, 1957.
[18] M. Jang, Y. Kim, J. Shin, S. Lee, and K. Park, "A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor," Applied physics letters, vol. 84, no. 5, pp. 741-743, 2004.
[19] J. Shi, H. Wang, D. Song, H. Tian, Y. Geng, and D. Yan, "n‐Channel, Ambipolar, and p‐Channel Organic Heterojunction Transistors Fabricated with Various Film Morphologies," Advanced Functional Materials, vol. 17, no. 3, pp. 397-400, 2007.
[20] J.-P. Colinge et al., "Nanowire transistors without junctions," Nature nanotechnology, vol. 5, no. 3, pp. 225-229, 2010.
[21] G. Eneman et al., "Stress simulations for optimal mobility group IV p-and nMOS FinFETs for the 14 nm node and beyond," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 6.5. 1-6.5. 4: IEEE.
[22] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors," Journal of Applied Physics, vol. 97, no. 1, p. 1, 2005.
[23] M. Yokoyama et al., "III–V/Ge high mobility channel integration of InGaAs n-channel and Ge p-channel metal–oxide–semiconductor field-effect transistors with self-aligned Ni-based metal source/drain using direct wafer bonding," Applied Physics Express, vol. 5, no. 7, p. 076501, 2012.
[24] W. Yu et al., "Hole Mobilities of $\ hbox {Si/Si} _ {0.5}\ hbox {Ge} _ {0.5} $ Quantum-Well Transistor on SOI and Strained SOI," IEEE Electron Device Letters, vol. 33, no. 6, pp. 758-760, 2012.
[25] M. Yang et al., "Impact of oxide defects on band offset at GeO 2/Ge interface," Applied Physics Letters, vol. 94, no. 14, p. 142903, 2009.
[26] C.-M. Lin et al., "Interfacial layer-free ZrO 2 on Ge with 0.39-nm EOT, κ∼ 43,∼ 2× 10− 3 A/cm 2 gate leakage, SS= 85 mV/dec, I on/I off= 6× 10 5, and high strain response," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 23.2. 1-23.1. 4: IEEE.
[27] J. Mitard et al., "15nm-W FIN high-performance low-defectivity strained-germanium pFinFETs with low temperature STI-last process," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, 2014, pp. 1-2: IEEE.
[28] R. Xie et al., "A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels," in Electron Devices Meeting (IEDM), 2016 IEEE International, 2016, pp. 2.7. 1-2.7. 4: IEEE.
[29] C. Liu and S. K. Lim, "A design tradeoff study with monolithic 3D integration," in Quality Electronic Design (ISQED), 2012 13th International Symposium on, 2012, pp. 529-536: IEEE.
[30] S. Wong, A. El, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, "Monolithic 3D integrated circuits," in VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, 2007, pp. 1-4: IEEE.
[31] A. K. Bansal, I. Jain, T. B. Hook, and A. Dixit, "Series Resistance Reduction in Stacked Nanowire FETs for 7-nm CMOS Technology," IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 266-272, 2016.
[32] J. Y.-C. Sun, "Semiconductor innovation into the next decade," in Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian, 2014, pp. 117-120: IEEE.
[33] T. Kondo et al., "A 3D stacked CMOS image sensor with 16Mpixel global-shutter mode and 2Mpixel 10000fps mode using 4 million interconnections," in VLSI Circuits (VLSI Circuits), 2015 Symposium on, 2015, pp. C90-C91: IEEE.
[34] Kim, Inhoe, et al. "A comparison of Al2O3/HfO2 and Al2O3/ZrO2 bilayers deposited by the atomic layer deposition method for potential gate dielectric applications." Japanese journal of applied physics 45.2R (2006): 919.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊