跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明佳
研究生(外文):Ming Chia Wu
論文名稱:超密波長分工及次載波有線電視系統的基本限制
論文名稱(外文):Fundamental Transmission Limitations on both Ultra-Dense WDM and Subcarrier Multiplexed CATV Systems
指導教授:尉應時
指導教授(外文):Winston I. Way
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:54
中文關鍵詞:波長分工系統次載波有線電視系統光纖非線性
外文關鍵詞:Wavelength Division Multiplexing SystemSubcarrier Multiplexed CATV Systemfiber nonlinearity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究超密波長分工系統及次載波有線電視系統的基本限制. 主要分為四個部份: 在第一部分中, 我們分析了2.5 及10 Gb/s的超密波長分工系統在不同單模光纖中的傳輸限制並分析了週期性放大的系統在C波帶的各項基本限制及最佳色散補償比例. 第二部分, 我們發現在1550nm 外調式類比有線電視系統中, 自發性及外加相位調變必須同時考慮才能精準地預測二階拍差, 特別是當外加相位調變的調變深度或頻率高的時侯. 這個結果對長距離1550nm 外調式光發射機的設計有很重要的影響. 第三部分, 我們證明了用多個CW載波來模擬測試M-QAM次載波有線電視系統的準確度是在量測誤差的範圍內. 最後, 我們架設了世界第一個類比的光纖循環迴圈並創造了78個頻道64-QAM 1550nm次載波系統的最長傳輸記錄-740km.
This thesis investigates fiber nonlinearity limitation in both ultra dense wavelength division multiplexing (U-DWDM) digital systems and subcarrier multiplexing analog lightwave transmission systems. The main research results are organized into four parts.
First of all, transmission performance of ultra-dense 2.5 and 10 Gbps NRZ IM/DD wavelength division multiplexing systems in various single-mode fibers is investigated. Fundamental limiting factors and their remedies by using optimum dispersion compensation for periodically amplified systems in C-band are presented.
Second, we found that the combined effects of self- and external-phase modulations must be considered in order to precisely predict the CSO distortions in a long-distance 1550 nm externally-modulated AM-CATV system, especially when the applied phase modulation index and modulating tone frequency to the integrated phase modulator are high. This result has important implications to the optimum design of 1550 nm transmitter for long-distance AM- and QAM-CATV systems.
Third, the validity of using multiple CW tones as the signal source to test the linearity of a multichannel M-ary quadrature-amplitude-modulation (M-QAM) subcarrier multiplexed (SCM) lightwave system was investigated. We consider the following representative optical fiber system nonlinearities: (1) laser clipping, and (2) the combined effect of laser frequency chirp and fiber dispersion. The results show that, if all orders of nonlinear distortions (NLDs) in a signal bandwidth are included in the total NLD power, the error caused by replacing M-QAM signals with CW tones can be within measurement uncertainty.
Finally, a long-distance 1550 nm subcarrier multiplexed lightwave trunk system which transported 78 channels of 64-QAM signals was demonstrated in a recirculating loop experiment. Each channel can achieve a carrier-to-(noise + nonlinear distortion) ratio of 30 dB after 740 km transmission through conventional single-mode fiber without dispersion compensation.
1. Introduction 1
2. Fiber Nonlinearity Limitations in Ultra-Dense WDM Systems 4
2.1. Fundamental Limiting Factors in U-DWDM Systems 4
2.1.1 Four Wave Mixing 10
2.1.2 Cross Phase Modulation 13
2.1.3 Self Phase Modulation and Residual Linear Dispersion 15
2.2. Overall System Limitations 16
2.3. Discussions 29
2.4. Conclusions 30
3. CSO Distortions due to the Combined Effects of Self- and External-Phase Modulations in Long-distance 1550 nm AM-CATV Systems 33
3.1. Experimental setup: 33
3.2. Experimental, numerical, and analytical results 34
3.3. Conclusion 37
4. On the Validity of Using CW Tones to Test the Linearity of Multichannel M-QAM Subcarrier Multiplexed Lightwave Systems 38
4.1. Analysis and numerical simulation 38
4.2. Experiment 40
4.3. Discussion 42
4.4. Conclusions 43
5. 740 km Transmission of 78-Channel 64-QAM Signals (2.34 Gb/s) Without Dispersion Compensation by Using a Recirculating Loop 44
5.1. Experimental setup 44
5.2. Results and discussion 46
5.3. Conclusion 47
6. Conclusions 49
[1] H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5-GHz spaced 1.28Tb/s (512-channel x 2.5 Gbps) super-dense WDM transmission over 320-km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett., vol. 14, pp. 405-408, 2002.
[2] G. Vareille, F. Pitel, and J.F. Marcerou, “3 Tbit/s (300×11.6Gbit/s) transmission over 7380 km using C+L band with 25GHz channel spacing and NRZ format,” OFC 2001 , PD22 -P1-3 vol.4, 2001.
[3] C. R. Davidson, C. J. Chen, M. Nissov, A. Pilipetskii, N. Ramanujam, H. D. Kidorf, B. Pedersen, M. A. Mills, C. Lin, M. I. Hayee, J. X. Cai, A. B. Puc, P. C. Corbett, R. Menges, H. Li, A. Elyamani, C. Rivers, and N. S. Bergano, “1800 Gbps transmission of one hundred and eighty 10 Gbps WDM channels over 7,000 km using the full EDFA C-band,” OFC’2000, PD25, 2000.
[4] L. Leng, S. Stulz, B. Zhu, L.E. Nelson, b. Edvold, L. Gruner-Nielsen, S. Radic, J. Centanni, and A. Gnauck, “1.6Tb/s (160 x 10.7 Gbps) transmission over 4000 km of nonZERO dispersion fiber at 25-GHz channel spacing,” IEEE Photon. Technol. Lett., vol. 15, pp. 1153-1155, August 2003.
[5] S. B. Jun, K. J. Park, and Y. C. Chung, “Transmission of 2.5-Gbps WDM channels spaced at 5GHz over 480 km of single-mode fiber,” IEEE Photon. Technol. Lett., vol. 15, pp. 1309-1311, September, 2003
[6] 21 C.Y. Kuo, D. Piehler, C. Gall, J. Kleefeld, A. Nilsson and L. Middleton, “High-performance optically amplified 1550-nm lightwave AM-VSB CATV transport system,” OFC’96 Technical Digest, pp.196-197.
[7] H. Dai, S. Ovadia and C. Lin, “Hybrid AM-VSB/M-QAM multichannel video transmission over 120 km of standard single-mode fiber with cascaded erbium-doped fiber amplifiers,“ IEEE Photonics Technology Letters, Vol.8, pp.1713-1715, Dec. 1996
[8] M.R. Phillips, T.E. Darcie, D. Marcuse, G.E. Bodeep and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE. Photonics Technology Letters, Vol.3, No.5, May 1991.
[9] C. Desem,. “Composite second order distortion due to self-phase modulation in externally modulated optical AM-SCM systems operating at 1550 nm, “Electron. Lett. vol 30, no 24, pp. 2055-6, Nov. 1994.
[10] Dogan A. Atlas, “Fiber induced distortion and phase noise to intensity noise conversion in externally modulated CATV systems,” 1996 NCTA Technical Papers, pp.289-293.
[11] M.R. Phillips, D.W. Anthon and K.L. Sweeney, “Chromatic dispersion effect in CATV analog lightwave systems using externally modulated transmitters,” OFC’96 post deadline paper PD17.
[12] F. W. Willems, W. Muys and J. C. van der Plaats, “Experimental verification of self-phase-modulation-induced nonlinear distortion in externally modulated AM-VSB lightwave systems,” OFC’96 Technical Digest, pp.281-282.
[13] 28 F. W. Willems, J. C. van der Plaats and W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electronics letters, Vol.30, No.4, pp.343-345, Feb. 1994.
[14] 30 W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, Academic Press, New York, 1998.
[15] P. Y. Chiang and W. I. Way, “Ultimate capacity of a laser diode in transporting multichannel M-QAM signals,” J. Lightwave Technol., vol.15 pp.1914-1924, Oct. 1997.
[16] S. L. Woodward and G. E. Bodeep, “Uncooled Fabry-Perot lasers for QPSK transmission,” IEEE Photon. Technol. Lett., vol.7, pp.558-560, May. 1995.
[17] K. Maeda, M. Fuse, K. Fujito, “Ultrahigh channel capacity optical CATV systems,” OFC’96 Technical Digest, pp. 197-198.
[18] 34 C. Tai, S. L. Tzeng, H. C. Chang, and W. I. Way, “Reduction of nonlinear distortion in MQW semiconductor optical amplifier using light injection and its application in multichannel M-QAM signal transmission systems,” IEEE Photon. Technol. Lett., vol.10, pp.609-611, Apr. 1998.
[19] 37 W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, Academic Press, New York, 1998.
[20] K. Maeda, M Fuse and K. Fujito, “Ultrahigh channel capacity optical CATV systems,” OFC’96 Technical Digest, pp.197-8.
[21] S. Tsuji and Y. Hamasaki, “250 km transmission of frequency multiplexed 64-QAM signals for digital CATV backbone application,” Technical Papers, NCTA, pp.21-29, May 1998.
[22] P. Y. Chiang and W. I. Way, “Ultimate capacity of a laser diode in transporting multichannel M-QAM signals,” J. Lightwave Technology, vol.15 pp.1914-1924, Oct. 1997.
[23] 41 G. Wilson, “Capacity of QAM SCM systems utilizing optically linearized Mach-Zehnder modulator as transmitter,” Electron. Lett., vol.34, pp.2372-2374, December 1998.
[24] K. Inoue, K. Nakanishi, K. Oda and H. Toba, “Interference and power penalty due to fiber Four-Wave Mixing in multichannel transmissions,” J. Lightwave Technology, vol. 12, pp. 1423-1439, 1994.
[25] Seiji Norimatsu, Masanori Maruoka, “Accurate Q-factor estimation of optically amplified systems in the presence of waveform distortions,” J. Lightwave Technology, vol. 20, pp. 19-27, 2002.
[26] Takashi Mizuochi, Kazuyuki Ishida, Tatsuya Kobayashi, Jun;ichi Abe, Kaoru Kinjo, Kuniaki Motoshima and Kumio Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technology , vol. 21, pp. 1933-43, 2003.
[27] Hadrien Louchet, Anes Hodzic, and Klaus Petermann, “Analytical model for the performance evaluation of DWDM transmission systems, “IEEE, Photon. Technol. Lett., vol. 15, pp. 1219-21, 2003
[28] C. J. Anderson and J.A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference, “ Electron. Lett., vol. 30, pp 71-72, Jan. 1994.
[29] D. Schadt, “Effect of amplifier spacing on Four-Wave Mixing in multichannel coherent communications,” Electron. Lett., vol. 27, pp. 1805-1807, 1991
[30] K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys., vol. 49, pp. 5090-5106, 1978.
[31] N. Shibata, R. P. Braun and R. G. Waarts, “ Phase-mismatch dependence of efficiency of wave generation through Four-Wave Mixing in a single-mode optical fiber,” IEEE J. Quantum Electron., vol. QE-23, pp.1205-1210, 1987.
[32] M. Eiselt, “Limits on WDM systems due to four-wave mixing: a statistical approach,” J. Lightwave Technology , vol. 17 pp. 2261-2267, 1999.
[33] Cartaxo, “Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technology, vol. 17, pp. 178-190, 1999.
[34] Eva Peral, William K. Marshall and Amnon Yariv, “Precise measurement of semiconductor laser chirp using effect of propagation in dispersion fiber and application to simulation of transmission through fiber grating,” J. Lightwave Technology , vol. 16, pp.1874-1880, 1998.
[35] R. Hui; K.R Demarest, and C. T. Allen, “Cross-phase modulation in multispan WDM optical fiber systems,” J. Lightwave Technology, vol. 17, pp. 1018 –1026, 1999
[36] R. Chraplyvy and R. W. Tkach, “Treabit/second transmission experiments, “ IEEE J. Quantum Electronics, vol. 34, pp. 2103-2108, September, 1998
[37] Lyubomirsky, T. Qui, J. Roman, M. Nayfeh, M. Y. Frankel, and M. G. Taylor, “Interplay of Fiber Nonlinearity and Optical Filtering in Ultra dense WDM,” IEEE, Photon. Technol. Lett., vol. 15, pp. 147-149, 2003
[38] Takehiro Tsuritani, Akira Agata, Itsuro Morita, Keiji Tanaka, and Noboru Edagawa, “Performance comparison between DSB and VSB signals in 20Gbit/s-based ultra-long-haul WDM systems,” OFC’2001 Technical Digest, MM5, 2001
[39] M. R. Phillips, “Distortion by stimulated Brillouin scattering effect in analog video lightwave systems,” OFC’97 post deadline paper PD23.
[40] M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,’ IEEE Photon. Technol. Lett., vol. 3, pp.481-483, May 1991
[41] Hewlett-Packard Company, “Spectrum analyzer measurement and noise,” Application note 1303.
[42] M. C. Wu, P. Y. Chiang and W. I. Way, “On the validity of using CW tones to test the linearity of multiplexed lightwave systems,” submitted to Photonics Tech. Letters.
[43] M. R. Phillips, D. W. Anthon, and K. L. Sweeney, “Chromatic dispersion effects in CATV analog lightwave systems using externally modulated transmitters,” OFC’96 Post-deadline Paper, PD17-1.
[44] N. S. Bergano and C. R. Davidson, “Circulating Loop Transmission Experiments for the Study of Long-Haul Transmission Systems Using Erbium-Doped Fiber Amplifiers,” J. Lightwave Technology, vol.15, pp.879-888, May 1995.
[45] M. C. Wu, C. H. Wang, and W. I. Way, “CSO distortions due to the combined effects of self- and external-phase modulations in long-distance 1550 nm AM-CATV systems,” IEEE Photon. Tech. Lett., vol.31, pp.718-720, June 1999.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top