跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李輝宇
研究生(外文):Hui-Yu Lee
論文名稱:CMOS影像感測器之可靠度分析與熱設計
論文名稱(外文):Thermal Analysis And Reliability Test For CMOS Image Sensor
指導教授:徐祥禎徐祥禎引用關係
指導教授(外文):Hsiung-Chen Hsu
學位類別:碩士
校院名稱:義守大學
系所名稱:機械與自動化工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:207
中文關鍵詞:疲勞壽命有限元素分析濕度應變熱循環測試CMOS影像感測器雲紋干涉法
外文關鍵詞:Fatigue LifeCMOS Image SensorHygroscopic Swelling StrainANSYSThermal Cycle TestMoir? Interferometry
相關次數:
  • 被引用被引用:10
  • 點閱點閱:3400
  • 評分評分:
  • 下載下載:314
  • 收藏至我的研究室書目清單書目收藏:0
CMOS影像感測器(CMOS Image Sensor,CIS)在最近幾年間被廣泛應用於光學滑鼠、數位相機、影像電話、汽車倒車雷達、視訊攝影機、以及家庭娛樂等方面,在可預期的未來,因為價格較低及功能提高,CMOS影像感測器會逐漸取代CCD影像感測器而成為主流。
本研究將針對CMOS影像感測器來做可靠度的分析與熱設計,一般來說,CMOS影像感測器最容易造成疲勞破壞的地方就是UV膠與銲錫接點處,因此如何選擇適當的材料將是一個很重要的問題,本研究將對其UV膠及封膠材料(Dam)的特性來做一分析與探討,且對不同成份的無鉛銲錫接點做一疲勞壽命的預測與比較。
由於在CMOS影像感測器中有空氣的存在,且空氣不只熱膨脹係數大,其吸收濕氣的速度也比其他高分子材料要來得快,因此如何有效地防止濕氣的進入也是一個重要的問題,在本研究中也將對這一問題做一分析及討論。
本研究應用了現今最廣泛使用的有限元素分析(Finite Element Analysis)軟體,來對CMOS影像感測器做一模擬與分析,建立起CMOS影像感測器的有限元素分析模型,模擬CMOS影像感測器在溫度變化中所造成的熱應力和熱應變,以及在濕度的環境中所造成的濕度應力及應變。也以雲紋干涉法(Moir? Interferometry)來進行實驗,觀察構裝元件材料間,因熱膨脹不匹配現象所造成的熱變形,再以有限元素分析軟體進行模擬分析,將其結果與雲紋干涉實驗結果做一比對與驗證。近幾年來,子模型的模擬技術應用越來越熱門,在本研究中也應用了子模型的模擬技術,並對其做一探討與分析。
Due to huge demand for optical mouse, digital cameras, photo-mobile phones, web-cam and optoelectronic devices in home entertainment in recent years, the production and packaging techniques for CMOS image sensor (CIS) have been rapidly developed and improved. The CIS will gradually become main product to take over CCD camera for its low price and high performance.
The reliability and thermal design for CMOS image sensor has been fully studied in this paper. It has been found that uv glue and solder paste are much easiest to failure in thermal fatigue for CIS structure. Therefore, it would be an important issue to choose suitable materials for CIS package. The thermal and moisture-absorption characteristic of uv glue and molding compound (Dam) for CIS have been studied in this paper. In addition, the predicted thermal fatigue life for different series of lead-free SnAgCu solder paste has been conducted in this research.
Because the coefficient of thermal expansion (CTE) of the air is much greater than other materials and the rate of absorbed moisture is faster than other polymer materials, it is important to develop an effective moisture-resistant mechanism for CIS package, which has been carefully studied in this paper.
A three-dimensional solid model of CMOS image sensor based on finite element ANSYS software is developed to predict the thermal-induced strain, stress distributions, and the hygroscopic swelling strain. The predicted thermal-induced displacements were found to be excellent agreement with the Moir? Interferometry experimental in-plane deformation. In this paper, the application of sub-model scheme in thermal cycle test prediction was also studied for its efficiency and interesting in recent years.
中文摘要Ⅰ
英文摘要Ⅲ
致謝Ⅴ
總目錄Ⅵ
圖目錄ⅩⅡ
表目錄ⅩⅨ
符號表.ⅩⅩⅡ
第一章 緒論與介紹1
1.1 緣由1
1.2 CMOS影像感測器3
1.3 熱設計5
1.4 可靠度8
1.5 研究目的10
第二章 文獻回顧12
第三章 理論基礎20
3.1 熱傳基礎理論20
3.1.1 熱傳導(Conduction)20
3.1.2 熱對流(Convection)22
3.2 濕度傳遞基礎理論23
3.2.1 吸濕(Moisture Pre-Conditioning)23
3.2.2 去濕(Dry-Baking)23
3.3 熱應力(Thermal Stress)、熱應變(Thermal Strain)24
3.4 等效應力(Von Mises Stress)29
3.5 潛變(Creep29
3.6 無鉛銲錫潛變建構方程式31
3.7 預測疲勞壽命模式32
3.8 LS-DYNA掉落模式33
第四章 有限元素模型與架構35
4.1 封裝製程程序35
4.1.1 前段製程36
4.1.2 後段製程37
4.2 研究架構38
4.3 有限元素分析模型的基本假設43
4.4 材料性質參數設定44
4.5 有限元素模型與網格化46
4.6 UV膠及封膠材料之參數探討50
4.6.1 有限元素類型50
4.6.2 邊界條件設定與求解設定51
4.6.3 參數設計51
4.6.4 模擬分析討論之觀察位置點52
4.7 濕度模擬53
4.7.1 有限元素類型53
4.7.2 邊界條件設定及求解設定55
4.7.3 參數設計59
4.7.4 模擬分析討論之觀察位置點60
4.8 溫度循環模擬61
4.8.1 有限元素類型61
4.8.2 邊界條件設定及求解設定61
4.8.2.1 整體模型的邊界條件設定及求解設定62
4.8.2.2 子模型的邊界條件設定及求解設定63
4.8.3 參數設計64
4.8.3.1 不同無鉛銲錫成份64
4.8.3.2 不同溫度循環條件65
4.8.3.3 不同比例之子模型66
4.8.3.4 不同網格數之子模型67
4.8.4 模擬分析討論之觀察位置點67
4.9 自由掉落模擬69
4.9.1 有限元素類型69
4.9.2 邊界條件設定及求解設定71
4.9.3 參數設計71
4.9.3.1 不同角度之掉落接觸71
4.9.3.2 不同高度之掉落接觸72
4.9.4 模擬分析討論之觀察位置點73
第五章 實驗驗證74
5.1 雲紋干涉法基本原理74
5.2 雲紋干涉實驗75
5.3 雲紋干涉實驗結果77
5.4 有限元素模型之分析結果與討論77
5.4.1 有限元素模型之邊界條件設定77
5.4.2 模擬結果78
5.4.3 結論80
5.5 翹曲模擬結果與討論80
5.5.1 有限元素模型之邊界條件設定80
5.5.2 模擬結果81
5.5.3 結論85
第六章 模擬結果與討論87
6.1 不同UV膠及封膠材料之參數的影響87
6.1.1 改變封膠材料的楊氏係數之模擬結果87
6.1.1.1 降溫狀態87
6.1.1.2 升溫狀態89
6.1.2 改變封膠材料的熱膨脹係數之模擬結果90
6.1.2.1 降溫狀態90
6.1.2.2 升溫狀態93
6.1.3 改變UV膠的楊氏係數之模擬結果95
6.1.3.1 降溫狀態95
6.1.3.2 升溫狀態97
6.1.4 改變UV膠的熱膨脹係數之模擬結果98
6.1.4.1 降溫狀態98
6.1.4.2 升溫狀態101
6.1.5 結論103
6.2 基板佈銅量的影響105
6.2.1 基板內無佈銅層之模擬結果105
6.2.2 基板內佈一層75%的銅層之模擬結果110
6.2.3 基板內佈一層100%的銅層之模擬結果114
6.2.4 基板內佈二層100%的銅層之模擬結果119
6.2.5 結論124
6.3 不同無鉛銲錫成份的影響125
6.3.1 不同無鉛銲錫成份之模擬結果126
6.3.2 結論137
6.4 不同溫度循環條件的影響138
6.4.1 不同溫度循環條件之模擬結果138
6.4.2 結論149
6.5 子模型之驗證151
6.5.1 子模型之驗證模擬結果151
6.5.2 結論153
6.6 不同比例之子模型的影響154
6.6.1 不同比例的子模型之模擬結果154
6.6.2 結論157
6.7 不同網格化之子模型的影響157
6.7.1 不同網格化的子模型之模擬結果157
6.7.2 結論161
6.8 不同角度掉落的影響161
6.8.1 不同角度掉落之模擬結果161
6.8.2 結論162
6.9 不同高度掉落的影響162
6.9.1 不同高度掉落之模擬結果163
6.9.2 結論163
第七章 總結165
第八章 未來展望168
參考文獻169
作者簡介181
[01]. M. A. Schuster and G. Strull, ”A Monolithic Mosaic of Photon Sensors for Solid-State Imaging Application”, IEEE Trans. Electron Devices, Vol.ED-13, No.12, December, 1966.
[02]. M. F. Tompsett, Gilbert F. Amelio, Walter J. Bertram, Reginald R. Buckley, W. J. McNamara, James C. Mikkelsen, David A. Sealer, ”Charge-Coupled Imaging Devices: Experimental Results”, IEEE Trans. Electron Devices, Vol.ED-18, No.11, pp.992~996, November, 1971.
[03]. Paul K. Weimer, G. Sadasiv, John E. Meyer, Lorand Meray-Horvath, Winthrop S. Pike, ”A Self-Scanned Solid-State Image Sensor”, in Proc. IEEE, Vol.55, No.9, September, 1967.
[04]. 陳榕庭、彭美桂編譯,CCD/CMOS影像感測器之基礎與應用,第一章,全華科技圖書股份有限公司,2005年8月。
[05]. 陳榕庭、傑克遜編著,半導體封裝與測試工程-CMOS影像感測器實務,第一章,全華科技圖書股份有限公司,2004年12月。
[06]. 陳信文、陳立軒、林永森、陳志銘編著,電子構裝技術與材料,第十九章,高立圖書有限公司,2004年4月。
[07]. 洪維懋,”系統級封裝塑膠構裝之熱設計與可靠度分析”,義守大學材料科學與工程學系碩士論文,2004年1月。
[08]. 陳榕庭、傑克遜編著,半導體封裝與測試工程-CMOS影像感測器實務,第七章,全華科技圖書股份有限公司,2004年12月。
[09]. Hubert K. Burke and Gerald J. Michon, ”Charge-Injection Imaging: Operating Techniques and Performances Characteristics”, IEEE Trans. Electron Devices, Vol.ED-23, No.2, February, 1976.
[10]. Sumio Terakawa, Takahiro Yamada, Kenju Horii, Tohru Takamura, Iwao Teramoto, ”A New Organization Area Image Sensor With CCD Readout through Charge Priming Transfer”, IEEE Electron Device Letters, Vol.EDL-1, No.5, May, 1980.
[11]. Peter J. W. Noble, ”Self-Scanned Silicon Image Detector Arrays”, IEEE Trans. Electron Devices, Vol.ED-15, No.4, April, 1968.
[12]. Savvas G. Chamberlain, ”Photosensitivity and Scanning of Silicon Image Detector Arrays”, IEEE Journal of Solid-State Circuits, Vol.SC-4, No.6, December, 1969.
[13]. Junichi Nishizawa, Takashige Tamamushi, Tadahiro Ohmi, ”Static Induction Transistor Image Sensors”, IEEE Trans. Electron Devices, Vol.ED-26, No.12, December, 1979.
[14]. Jaroslav Hynecek, ”A New Device Architecture Suitable for High - Resolution and High-Performance Image Sensors”, IEEE Trans. Electron Devices, Vol.35, No.5, May, 1988.
[15]. Nobuyoshi Tanaka, Tadahiro Ohmi, Yoshio Nakamura, ”A Novel Bipolar Imaging Device with Self-Noise-Reduction Capability”, IEEE Trans. Electron Devices, Vol.36, No.1, January, 1989.
[16]. D. Renshaw, P. B. Denyer, G. Wang, M. Lu, ”ASIC Image Sensors”, IEEE, 1990.
[17]. P. B. Denyer, D. Renshaw, Wang Guoyu, Lu Mingying, ”CMOS Image Sensors for Multimedia Applications”, IEEE Custom Integrated Circuit Conference, 1993.
[18]. Sunetra Mendis, Sabrina E. Kemeny, Eric R. Fossum, ”CMOS Active Pixel Image Sensor”, IEEE Trans. Electron Devices, Vol.41, No.3, March, 1994.
[19]. James P. Libous, ”Characterization of Flip - Chip CMOS ASIC Simultaneous Switching Noise on Multilayer Organic and Ceramic BGA/CGA Package”, IEEE, 1998.
[20]. Y. Y. Chew , K. H. Siek, W. M. Yee, ”Novel Backside Sample Preparation Processes for Advanced CMOS Integrated Circuit Failure Analysis”, IEEE Proceedings of 7th IPFA, 1999.
[21]. Jesse E. Galloway and Barry M. Miles, ”Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages”, IEEE Intersociety Conference on Thermal Phenomena, 1996.
[22]. Jesse E. Galloway and Barry M. Miles, ”Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages”, IEEE Trans. Components, Packaging, and Manufacturing Technology – Part A, Vol.20, No.3, September, 1997.
[23]. Sung Yi, Jing Sua Goh, Ji Cheng Yang, ”Residual Stresses in Plastic IC Packages during Surface Mounting Process Preceded by Moisture Soaking Test”, IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, Vol.20, No.3, August, 1997.
[24]. Yumiko Ohshima, Takahito Nakazawa, Kazuhide Doi, Hideo Aoki, Yoichi Hiruta, ”Flip Chip Underfill Reliability of CSP during IR Reflow Soldering”, IEEE, 1997.
[25]. E. H. Wong, K. C. Chan, R. Rajoo, T. B. Lim, ”The Mechanics and Impact of Hygroscopic Swelling of Polymeric Materials in Electronic Packaging”, IEEE Electronic Components and Technology Conference, 2000.
[26]. E. H. Wong, S. W. Koh, R. Rajoo, T. B. Lim, ”Underfill Swelling and Temperature - Humidity Performance of Flip Chip PBGA Package”, IEEE Electronic Packaging Technology Conference, 2000.
[27]. E. H. Wong, S. W. Koh, K. H. Lee, R. Rajoo, ”Advanced Moisture Diffusion Modeling & Characterisation for Electronic Packaging”, IEEE Electronic Components and Technology Conference, 2002.
[28]. Lam Tim Fai, ”FEA Simulation on Moisture Absorption in PBGA Packages under Various Moisture Pre-Conditioning”, IEEE Electronic Components and Technology Conference, 2000.
[29]. R. L. Shook, D. L. Gerlach, B. T. Vaccaro, ”Moisture Blocking Planes and Their Effect on Reflow Performance in Achieving Reliable Pb-free Assembly Capability for PBGAs”, IEEE Electronic Components and Technology Conference, 2001.
[30]. Tong Yan Tee and Hun Shen Ng, ”Whole Field Vapor Pressure Modeling of QFN during Reflow with Coupled Hygro-mechanical and Thermo-mechanical Stresses”, IEEE Electronic Components and Technology Conference, 2002.
[31]. Y. Shi, A. A. O. Tay, E. H. Wong, R. Ranjan, ”An Effective Method of Characterizing Moisture Desorption of Polymeric Materials at High Temperature”, IEEE Electronic Packaging Technology Conference, 2002.
[32]. Sachin P. Lahoti, Sharan C. Kallolimath, Jiang Zhou, ”Finite Element Analysis of Thermo-hygro-mechanical Failure of a Flip Chip Package”, IEEE 6th International Conference on Electronic Packaging Technology, 2005.
[33]. Xueren Zhang , Tong Yan Tee , Hun Shen Ng , Jerome Teysseyre, ”Comprehensive Hygro-thermo-mechanical Modeling and Testing of Stacked Die BGA Module with Molded Underfill”, IEEE Electronic Components and Technology Conference, 2005.
[34]. Jiang Zhou , Sachin P. Lahoti , Manish P. Sitlani , Sharan C. Kallolimath, Ramesh Putta, ”Investigation of Non-Uniform Moisture Distribution on Determination of Hygroscopic Swelling Coefficient and Finite Element Modeling for a Flip Chip Package”, IEEE 6th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2005.
[35]. L. K. Teh, M. Teo, E. Anto, C. C. Wong, S. G. Mhaisalkar, P. S. Teo, E. H. Wong, ”Moisture-Induced Failures of Adhesive Flip Chip Interconnects”, IEEE Trans. Components and Packaging Technologies, Vol.28, No.3, September, 2005.
[36]. C. Y. Yin, H. Lu, C. Bailey, Y. C. Chan, ”Moisture Effects on the Reliability of Anisotropic Conductive Films”, IEEE 6th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2005.
[37]. Masaki Shiratori and Qiang Yu, ”Fatigue - Strength Prediction of Microelectronics Solder Joints under Thermal Cyclic Loading”, IEEE Intersociety Conference on Thermal Phenomena, 1996.
[38]. Morihiko Ikemizu, Yuji Fukuzawa, Jirou Nakano, Testuya Yokoi, Kenji Miyajima, Hiroshi Funakura, Eiichi Hosomi, ”CSP Solder Ball Reliability”, IEEE / CPMT Int’l Electronics Manufacturing Technology Symposium, 1997.
[39]. W. Ren, J. Wang, Z. Qian, D. Zou, S. Liu, ”Investigation of Nonlinear Behaviors of Packaging Materials and Its Application to a Flip-Chip Package”, International Symposium on Advanced Packaging Materials”, 1999.
[40]. Frank Feustel, Steffen Wiese, Ekkehard Meusel, ”Time-Dependent Material Modeling for Finite Element Analysis of Flip Chips”, IEEE Electronic Components and Technology Conference, 2000.
[41]. 楊志輝、賈中和,”軟性基板TFLGA封裝之可靠度評估”,工業材料雜誌,169期,90年1月。
[42]. John H. Lau and S. W. Ricky Lee, ”Modeling and Analysis of 96.5Sn-3.5Ag Lead –Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board”, IEEE Trans. Electronics Packaging Manufacturing, Vol.25, No.1, January, 2002.
[43]. A. Chng , A. A. O. Tay , K. M. Lim , T. C. Chai , C. S. Premachandran, ”Finite Element Simulation of the Fatigue Behaviour of a MEMS Package”, IEEE Electronics Packaging Technology Conference, 2002.
[44]. Nicholas Kao, Jeng Yuan Lai, Ming Zong Wang, Yu Po Wang, C. S. Hsiao, ”Molded Flip Chip BGA Characterization”, IEEE Electronics Packaging Technology Conference, 2004.
[45]. Xuejun Fan, ”Combined Thermal and Thermo-mechanical Modeling for a Multi-Chip QFN Package With Metal-Core Printed Circuit Board”, IEEE Intersociety Conference on Thermal Phenomena, 2004.
[46]. Jamin Ling, Tie Wang, Ming Ying, Ted Tessier, IK Shim, ”Effect of Underfill Materials on Pb-Free Flip Chip Package Reliability”, IEEE, 2005.
[47]. Bret A. Zahn , ”Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Stacked Chip Scale Ball Grid Array Package”.
[48]. Tong Yan Tee, K. Sivakumar, Antonio Do - Bento - Vieira, ”Board Level Solder Joint Reliability Modeling of LFBGA Package”, IEEE Int’l Symp on Electronic Materials & Packaging, 2000.
[49]. Tong Yan Tee, Hun Shen Ng, Jean - Luc Diot, Giovanni Frezza, Roberto Tiziani, Giancarlo Santospirito, ”Comprehensive Design Analysis of QFN and Power QFN Packages for Enhanced Board Level Solder Joint Reliability”, IEEE Electronic Components and Technology Conference, 2002.
[50]. John H. L. Pang, D. Y. R. Chong, T. H. Low, ”Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability”, IEEE Trans. Components and Packaging Technologies, Vol.24, No.4, December, 2001.
[51]. Alfred Yeo, Charles Lee, John H. L. Pang, ”Solder Joint Reliability Modeling of 96.5Sn/3.5Ag Flip Chip Bumps under Temperature Cycling Condition”, IEEE Electronics Packaging Technology Conference, 2003.
[52]. John H. L. Pang, Patrick T. H. Low, B. S. Xiong, ”Lead - Free 95.5Sn-3.8Ag-0.7Cu Solder Joint Reliability Analysis for Micro - BGA Assembly”, IEEE Intersociety Conference on Thermal Phenomena, 2004.
[53]. A. Schubert , R. Dudek , R. Doring , B. Michel , ”Reliability Investigations of Flip Chip Interconnects in FCOB and FCOG Applications by FEA”, IEEE / CPMT Electronics Packaging Technology Conference, 1998.
[54]. A. Schubert, R. Dudek, R. Leutenbauer, R. Doring, J. Kloeser, H. Oppermann, B. Michel, H. Reichl, ”Do Chip Size Limits Exist for DCA”, International Symposium on Advanced Packaging Materials, 1999.
[55]. A. Schubert, R. Dudek, R. Doring, H. Walter, E. Auerswald, A. Gollhardt, B. Michel, ”Thermo-mechanical Reliability of Lead-free Solder Interconnects”, 8th International Symposium on Advanced Packaging Materials, 2002.
[56]. Rainer Dudek, Ralf Doring, Bernd Michel, Gunnar Petzold, Juergen Albrecht, Christian Wieand, Stefan Kuhn, ”Investigations on The Reliability of Lead-Free CSP Subjected to Harsh Environments”, IEEE Intersociety Conference on Thermal Phenomena, 2004.
[57]. S. Deplanque, W. Nuchter, M. Spraul, B. Wunderle, R. Dudek, B. Michel, ”Relevance of Primary Creep in Thermo-mechanical Cycling for Life-Time Prediction in Sn-Based Solders”, IEEE 6th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2005.
[58]. Rainer Dudek, Wolfgang Faust, Juergen Vogel, Bernd Michel, ”A Comparative Study of Solder Fatigue Evaluated by Microscopic In-situ Analysis, On-line Resistance Measurement and FE Calculations”, IEEE 6th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2005.
[59]. F. X. Che and John H. L. Pang, ”Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints”, IEEE Electronics Packaging Technology Conference, 2004.
[60]. F. X. Che, John H. L. Pang, B. S. Xiong, Luhua Xu, T. H. Low, ”Lead Free Solder Joint Reliability Characterization for PBGA, PQFP, and TSSOP Assemblies”, IEEE Electronic Component and Technology Conference, 2005.
[61]. Tong Hong Wang and Yi - Shao Lai, ”Submodeling Analysis for Path-Dependent Thermo-mechanical Problem”, ASME Journal of Electronic Packaging, 2005.
[62]. Chin-Li Kao, Yi-Shao Lai, Tong Hong Wang, “Submodeling Analysis for Thermal Cycling Reliability of High Performance Flip-Chip Package Assembly”, 2005.
[63]. Jason Wu, Guoshu Song, Chao-Pin Yeh, Karl Wyatt, ”Drop/Impact Simulation and Test Validation of Telecommunication Products”, IEEE Intersociety Conference on Thermal Phenomena, 1998.
[64]. 葉昶麟、賴逸少,”無鉛銲錫之掉落可靠度分析”,機械月刊,355期,2002年,2月。
[65]. Y. Q. Wang , K. H. Low , F. X. Che , H. L. J. Pang , S. P. Yeo, ”Modeling and Simulation of Printed Circuit Board Drop Test”, IEEE Electronics Packaging Technology Conference, 2003.
[66]. K. H. Low, Yuqi Wang, K. H. Hoon, W. K. Wai, ”A Virtual Boundary Model for a Quick Drop-Impact Analysis of PCB in Electronic Products”, IEEE Electronics Packaging Technology Conference, 2003.
[67]. Qiang Yu, Keiji Watanabe, Toshihiro Tsurusawa, Masaki Shiratori, Manabu Kakino, Noriyuki Fujiwara, ”The Examination of the Drop Impact Test Method”, IEEE Intersociety Conference on Thermal Phenomena, 2004.
[68]. Chai T. C., Sharon Quek, Hnin W. Y., Wong E. H., Julian Chia, Wang Y. Y., Tan Y. M., Lim C. T., ”Board Level Drop Test Reliability of IC Packages”, IEEE Electronic Component and Technology Conference, 2005.
[69]. Lou Haohuan, Qu Xin, Chen Zhaoyi, Wang Jiaji, Taekoo Lee, Hui Wang, ”Lifetime Assessment of Solder Joints of BGA Package in Board Level Drop Test”, IEEE 6th International Conference on Electronic Packaging Technology, 2005.
[70]. E. H. Wong, K. M. Lim, Norman Lee, Simon Seah, Cindy Hoe, Jason Wang, ”Drop Impact Test-Mechanics & Physics of Failure”, IEEE Electronics Packaging Technology Conference, 2002.
[71]. Feixia Pan, Ramin Vatanporast, ”Reliability Analysis for the Design of a Multi-layer Flexible Board”, IEEE Electronic Component and Technology Conference, 2005.
[72]. George E. Dieter, ”Mechanical Metallurgy”, Chap13, Metric Editions Materials Science & Metallurgy, 1988.
[73]. 陳信文、陳立軒、林永森、陳志銘編譯,微系統構裝基礎原理,第五章,高立圖書有限公司,2002年12月。
[74]. 陳榕庭、傑克遜編著,半導體封裝與測試工程-CMOS影像感測器實務,第五章,全華科技圖書股份有限公司,2004年12月。
[75]. IPC / JEDEC J - STD - 020C , ”Moisture / Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices”, JEDEC, July, 2004.
[76]. JESD22 - A104 - B, ”Temperature Cycling”, JEDEC Solid State Technology Association, July, 2000.
[77]. Mil-Std-883 Method 1010, ”Temperature Cycling”.
[78]. Hsiang - Chen Hsu , Hui - Yu Lee , Yu - Cha Hsu , Kuan - Tien Shen, ”Optimal Thermo-Hygro-Mechanical Design For Reliability of CMOS Image Sensor”, Advances in Materials and Processing Technologies (AMPT), 2006.
[79]. Hui - Yu Lee, Yu - Chia Hsu, Hsiang - Chen Hsu, Shen - Li Fu, Cheng-Tung Lee, Li-Shan Chen,Mark C.L. Chung,Chung-Chi Yang, Kuan-Chieh Huang, ”Advanced Reliability and Moisture Absorption Modeling for QFN CMOS Image Sensor under Moisture Pre – Conditioning”, IMAPS 2006 International Technical Symposium, 2006.
[80]. Hsiang - Chen Hsu, Yu - Chia Hsu, Hui - Yu Lee, Mark CL Chung, Shen - Li Fu, ”A Study of Reliability Drop Test Effects for SnAgCu Solder Bump in System-in-Package and Board Level Package”, 11th Pan Pacific Microelectronic Symposium, 2006.
[81]. Hsiang-Chen Hsu, Hui-Yu Lee, Yu-Chia Hsu, Shen-Li Fu, Chung-Chi Yang, Kuan-Chieh Huang, ”Reliability and Thermal Structure Design for CMOS Image Sensor”, EPTC, 2005.
[82]. 許育嘉,李輝宇,吳崇源,徐祥禎,”系統級封裝之掉落測試與可靠度分析”,2005年第二十九屆全國力學會議,2005。
[83]. 李輝宇,許育嘉,陳志安,徐祥禎,”CMOS影像感測器結構熱設計”,2005年第二十九屆全國力學會議,2005。
[84]. Hui-Yu Lee, Yu-Chia Hsu, Hsiang-Chen Hsu, Zhanli Guo, Shen-Li Fu, Chung-Chi Yang, Kuan-Chieh Huang, ”Optimization Thermal Structure Design for CMOS Image Sensor”, IMAPS Taiwan International Technical Symposium, 2005.
[85]. 李輝宇,徐祥禎,”CMOS影像感測器可靠度測試設計”,半導體學院電子報,2005年7月。
[86]. Hsiang-Chen Hsu, Wei-Mao Hung, ”Reliability Prediction for 95.5Sn 3.9Ag 0.6Cu Solder Bump and Thermal Design for Lead Free System In Package with Polymer-Based Material”, Material Science Forum, Vol.505-507, No.1, pp.289-294, 2006.
[87]. Wei - Mao Hung, Hui - Yu Lee, Hsiang - Chen Hsu, Shen - Li Fu, ”Thermal Mechanical Analysis for Lead Free System in Package”, IMAPS Taiwan Technical Symposium, 2004.
[88]. 鐘文仁、陳佑任編著,IC封裝製程與CAE應用,第七章,全華科技圖書股份有限公司,2003年6月。
[89]. A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, H. Reichl, ”Fatigue Life Models for SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation”, IEEE Electronic Components and Technology Conference, 2003.
[90]. Robert Darveaux, ”Effect of Simulation Methodlogy on Solder Joint Crack Growth Correlation and Fatigue Life Prediction”, ASME Journal of Electronic Packaging, Vol.124, p.p.147~154, September, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top