跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李淵菘
研究生(外文):Yuen-Sung Lee
論文名稱:紫蘇子及其脫脂粕萃取物之抗氧化與抗發炎作用
論文名稱(外文):Antioxidant and Anti-inflammatory Activities of Extracts from Perilla Seed and Its Defatted Meal
指導教授:蘇正德蘇正德引用關係喬長誠喬長誠引用關係
指導教授(外文):Jeng-De SuCharng-Cherng Chyau
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:121
中文關鍵詞:紫蘇子多酚類化合物鼠巨噬細胞株RAW264.7抗氧化抗發炎
外文關鍵詞:Perilla seedpolyphenolsmurine macrophage cell line RAW264.7antioxidantanti-inflammation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2343
  • 評分評分:
  • 下載下載:138
  • 收藏至我的研究室書目清單書目收藏:1
研究報告指出紫蘇子油具有預防動脈硬化、化學物質誘發之癌症以及改善免疫功能等。近年來,脫脂紫蘇子中所含酚類化合物已被指出具有抗菌及抗脂氧化酶活性之能力,且報告也指出其中含有多酚類化合物的物質,具有抗氧化、抗發炎、抗過敏、抗病毒以及抗癌之能力。雖然脫脂紫蘇子殘渣為一種工業廢棄物,其中之多酚類化合物或許可發展為保健功能產品原料之來源。本研究探討紫蘇子不同溶劑萃取物多酚含量及其抗氧化力與調控發炎反應之能力。紫蘇子萃取物分為以甲醇 (ME)、水萃取 (WE) 及分別以正己烷 (HM)、超臨界二氧化碳流體 (5000 psi, 40, 60, 80℃)(SM40, 60, 80) 脫脂後之殘渣,再以甲醇萃取等六部分。紫蘇子萃取物中酚類化合物,分別以高效能液相層析儀與液相層析-離子阱質譜儀分離確認其主要酚類成分為咖啡酸、迷迭香酸、迷迭香酸糖苷化合物、木犀草素與芹菜素。
體外抗氧化活性方面,以不同化學檢測方法分析其抗氧化能力,包括還原力、HRP-H2O2-luminol 發光系統、清除DPPH與ABTS•+ 陽離子自由基,結果顯示大多以ME與HM效果為最佳。另外對於細胞內抗氧化酵素活性之影響方面,以巨噬細胞 RAW264.7進行超氧陰離子歧化酶 (SOD) 及觸酶 (CAT) 活性之探討。在SOD活性實驗中,加入ME (400 μg/mL) 或HM (400 μg/mL) 可以顯著增加SOD之活性 (P < 0.05) 且巨噬細胞先經脂多醣誘發發炎反應後,添加ME (200 μg/mL) 或HM (400 μg/mL) 仍可顯著增加其活性。另外CAT之活性,較低濃度之ME (100 μg/mL) 或HM (200 μg/mL),即能顯著提升 (P < 0.01) 其活性,若先以脂多醣誘發發炎反應後,添加ME (400 μg/mL) 或HM (400 μg/mL) 仍可顯著增加CAT活性,顯示ME或HM在巨噬細胞具有清除自由基之能力。
在抗發炎方面,探討以脂多醣誘發巨噬細胞RAW 264.7生成一氧化氮 (NO)、腫瘤壞死因子-α (TNF-α)、前列腺素E2 (PGE2)、誘發型一氧化氮合成酶 (iNOS)、II型環氧合酶 (COX-2) 及抑制蛋白 (IκB-α) 之表現。紫蘇子酚類成分於濃度250 μM (咖啡酸、迷迭香酸) 與25 μM (木犀草素、芹菜素) 皆能夠顯著抑制NO、PGE2、TNF-α、iNOS及COX-2的生成。ME、HM及SM40於濃度200 μg/mL以上,即可顯著抑制NO的產生,且呈劑量依隨效應;此三種萃取物在濃度400 μg/mL時,亦能顯著抑制TNF-α的產生,而WE皆不具抑制效果。另外ME、HM及WE皆對PGE2的產生具有抑制作用。綜合結果顯示萃取物中尤以ME、HM皆能抑制NO、PGE2及TNF-α的生成,而ME與HM在濃度400 μg/mL時,皆能顯著降低iNOS、COX-2表現 (P <0.01) 及阻斷IκB-α的降解。因此本研究之結論指出,紫蘇子多酚萃取物具有良好抗氧化效果,且可藉由阻斷IκB-α蛋白質降解,使NF-κB的活性下降,進而抑制細胞激素、iNOS及COX-2蛋白質的產生,進而達到抗發炎之功效。
Several reports have suggested that perilla seed oil has some functions for preventing atherosclerosis and chemically induced cancer and improving immune activity. The antioxidant, anti-inflammatory, anti-allergy, anti-viral and anti-cancer effects of phenolic compounds from perilla seed also have been reported in the past few years. Recently, phenolic compounds which existed in defatted perilla seed have been indicated with antimicrobial and antilipoxygenase activities. Although the defatted residue from perilla seed might be a kind of waste in oil and lipid industries, the existed polyphenols might be possible as one of good sources for developing a healthy food. In this study, we aimed to investigate the polyphenol contents of different solvent extracts from perilla seed and/or defatted seed, their antioxidant activity and the ability on inflammatory regulation in the lipopolysaccharide (LPS)-induced macrophage inflammatory response also would be studied. The preliminary crude extracts were prepared from perilla seed by using boiling water or methanol. After that, the defatted perilla seed from methanol extraction was re-extracted with n-hexane (HM). In addition, supercritical fluid extraction (carbon dioxide under 5000 psi pressure, at 40, 60 and 80 C and expressed as S40, S60, S80, respectively) was applied in the defat procedures in replace of the traditional used hexane solvent. The defatted meal was then extracted by using methanol (extract expressed as SM). In chemical composition analysis, phenolic components of different solvent extracts from perilla seed were isolated and identified by high performance liquid chromatography (HPLC) with photodiode array detection (PDA) and ion trap mass spectrometry with negative electron spray ionization mode. Four compounds, i.e. caffeic acid、rosmarinic acid、rosmarinic acid glucoside (Ra-G)、luteolin and apigenin were identified.
In the antioxidant activities assays in vitro, including reducing power, horseradish peroxidase (HRP)-H2O2-luminol system, scavenging activity on DPPH free radical and ABTS•+ cation free radical, were evaluated and compared. Results showed that the better effects of extracts on free radicals scavenging were from ME and HM. In addition, the antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT) were further compared in RAW 264.7 cell assays. In which, SOD activities were obviously up-regulated in the doses of 400 μg/mL from ME and HM, while the activities were also obviously elevated after adding ME (200 μg/mL) or HM (400 μg/mL) into the LPS-induced macrophages. CAT activities were obviously up-regulated in the doses of 100 and 200 μg/mL from ME and HM, respectively. The obviously elevated effects of ME and HM on the activities of antioxidant enzymes in LPS-stimulated cells were shown in ME and HM at 200, 400 μg/mL, respectively, in which the activities of SOD and CAT were elevated at 400 μg/mL concentrations significantly elevated the activities of CAT.
In anti-inflammatory experiments, murine macrophage RAW 264.7 cells were conducted for studying the inhibition abilities of extracts on LPS-induced inflammation markers, i.e. tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and inhibitor κB-α (IκB-α) proteins. Results showed that NO, PGE2, TNF-α, iNOS and COX-2 production were significantly inhibited by those of phenolic components found in perilla seed, including caffeic acid or rosmarinic acid in the doses of 250 μM and apigenin or luteolin in the doses of 25 μM. NO production was significantly inhibited at 200 μg/mL in ME, HM and SM40, respectively, and in a concentration-dependent manner. Moreover, the production of TNF-α was obviously (P < 0.05) inhibited at the concentration of 400 μg/mL in each extract as above. Contrarily, water extract showed no obviously effect on the productions of NO and TNF-α. PGE2 production was significantly inhibited at 400 μg/mL in ME, HM and WE, respectively. Western blot analysis revealed the suppression of iNOS, COX-2 expressions and IκB-α degradation were in the doses of 400 μg/mL from HM and SM, respectively. Our results suggested that extracts prepared from defatted perilla seed had antioxidant activities and the inhibition activities on the production of cytokines. Moreover, the production of iNOS and COX-2 proteins induced by LPS could be inhibited by extracts through blocking IκB-α degradation and therefore the inactivation of NF-κB.
中文摘要.................................................................................................Ⅴ
英文摘要...............................................................................................VII
圖次.........................................................................................................X
表次......................................................................................................XIV
第一章 序論............................................................................................1
第二章 文獻整理…................................................................................2
第一節 紫蘇…....................................................................……………2
第二節 超臨界二氧化碳..............................…………………..………8
第三節 化學冷光…..............................………………………………..9
第四節 自由基與抗氧化防禦系統..............................…………….....13
第五節 巨噬細胞與發炎反應..............................…………………….33
第三章 研究目的與實驗架構. ..............……………………………...46
第四章 材料與方法…..............……………………………………….48
第一節 材料來源..............…………………………………………….48
一、樣品..............……………………………………………………...48
二、實驗試藥.........................................................................................48
三、實驗設備…..............……………………………………………...51
第二節 實驗方法..............…………………………………………….52
一、紫蘇子萃取物之製備….....……………………………………....52
二、一般組成成分分析.........................................................................53
三、紫蘇子酚類化合物之含量分析….....…………………………....55
(一) 總酚類化合物 (Total polyphenols)含量之測定….......................55
(二) 總類黃酮 (Total flavonoids)含量之測定…..................................55
(三) 縮合型單寧 (Condensed tannins)含量之測定..............................55
四、抗氧化性檢測方法….....................................................................56
(一) DPPH自由基清除能力測定...........................................................56
(二) 還原力(Reducing power)測定…...................................................56
(三) Trolox抗氧化當量活性..................................................................57
(四) HRP-luminol-H2O2 system..............................................................57
五、HPLC及LC-MS分析…...................................................................58
(一) HPLC分析.......................................................................................58
(二) LC-MS分析.....................................................................................58
六、細胞培養.........................................................................................59
七、細胞存活率測定 (MTT assay)…..........................................……60
八、細胞內抗氧化酵素活性分析….....................................................61
九、細胞內發炎物質分析.....................................................................62
十、統計分析….....................................................................................66
第五章 結果與討論…...........................................................................67
第ㄧ節 紫蘇子成份分析.......................................................................67
ㄧ、紫蘇子之一般組成.........................................................................67
二、紫蘇子萃取物之產率與酚類化合物之組成.................................67
三、紫蘇子萃取物之主要酚類成分定性定量分析.............................70
第二節 化學性抗氧化活性測定...........................................................76
一、DPPH自由基清除能力...................................................................76
二、還原力.............................................................................................78
三、總抗氧化能力.................................................................................80
四、HRP-H2O2-luminol system..............................................................82
第三節 細胞內抗氧化酵素系統................................ ..........................88
一、紫蘇子多酚粗萃物對巨噬細胞RAW 264.7細胞存活率之影響..88
二、超氧陰離子歧化酶 (SOD)活性................. ..................................90
三、觸酶 (CAT)活性............................................................................90
第四節 抗發炎活性...............................................................................93
一、ㄧ氧化氮 (NO)生成......................................................................93
二、腫瘤壞死因子-α (Tumor necrosis factor-alpha;TNF-α)生成.....96
三、前列腺素E2 (Prostaglandins E2;PGE2)生成................................98
四、紫蘇子萃取物對誘發型一氧化氮合成酶 (iNOS)表現之影響..100
五、紫蘇子萃取物對II型環氧合酶 (COX-2)表現之影響.................103
六、紫蘇子萃取物對κB抑制蛋白 (IκB-α)表現之影響.....................106
第六章 結論.....……………………………………………………….110
第七章 參考文獻……………………………………………………..111
江蘇新醫學院「中藥大辭典」編寫組,2003。中藥大辭典 (下) : 1738-1739。上海科學出版社,上海。
李裕娟,楊純明,2004。農業試驗所技術服務,60:16-19頁。
林宗義,林敬二,1994。儀器分析4th. Sannders College。
唐自強,1999。以電化學法及化學冷光法對DNA分析之研究。國立中山大學化學系博士論文。
徐振訓,2006。以高血脂動物模式評估紫蘇油與納豆激酶對調節血脂功能之影響。亞洲大學生物科技學系碩士論文。
陳彥州,林慧宜,柯景懷,沈杏娟,2002。天然多酚類化合物之抗發炎、抗癌及誘導腦血管舒張之活性研究。國科會生命科學簡訊。台北醫學大學生藥學研究所及醫學系皮膚學科。
陳惠英,顏國欽,1998。自由基、抗氧化防禦與人體健康。中華營誌,23 (1):105-121。
劉新裕,林俊義,張成國,2002。藥用植物專輯。行政院農業委員會農業試驗所編印,36頁。
盧孟佑,施金元,1991。Roitt 免疫學,初版,1-6頁,合記圖書出版社,台北市。
Abuja, P. M. and Albertini, R. 2001. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta. 306: 1-17.
Adhikari, P., Hwang, K.T., Park, J.N., Kim, C.K. 2006. Policosanol content and composition in perilla seeds. J. Agric. Food Chem. 54: 5359-5362.
Akhrem, A. A., Semenkova, G. N., Cherenkevich, S. N., Popva, Y. M., Kiselev, P. A. 1985. Biomed. Biochim. Acta. 44: 1591.
Arnao, M. B., Cano. A., Hernadez-Ruiz, J., Carcia-Canovas, F. and Acosta, M. 1996. Inhibition by L-ascorbic acid and other antioxidants of 2,2’-azino-bis (3-ethylbiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase:a new approach for determining total antioxidant status of food. Analy. Biochem. 236: 255-261.

Aruoma, O. I. 1994. Nutrition and health aspects of free radicals and antioxidants. Food Chem. 72: 145-171.
Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8(12): 406-413.
Bate, S. and Swain, E. C. 1962. Comparative Biochemistry, Vol. 3, Mason, H. S. and Florkin, M., Eds. Academic Press, New York. 764.
Birks, J. W. 1989. Chemiluminescence and photochemical reaction detection in chromatography, VCH, New York.
Bors, W., Heller, W., Michel, C. and Saran, M. 1990. Flavonoids as antioxidants determination of radical-scavenging efficiencies. Methods Enzymol 186: 343-355.
Bredt, D.S., Snyder, S.H. 1990. Isolation of nitric oxide synthetase, a calmodulin requireing enzyme. Proc. Natl. Acad. Sci. 87: 682-685.
Bremner, P. and Heinrich, M. 2002. Natural products as targeted modulators of the nuclear factor-kappaB pathway. J. Pharm. Pharmacol. 54: 453-472.
Campbell, S., Stone, W., Whaley, S., Krishnan, K. 2003. Development of gamma-tocopherol as a colorectal cancer chemopreventive agent. Crit. Rev. Oncol. Hematol. 47: 249-259.
Castelluccio, C., Paganga, G., Melikian, N., bolwell, G., Pridham, J., Sampson, J. and Rice-Evans, C. A. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 368: 188-192.
Chan, M. M. Y., Ho, C. T. and Hung, H. I. 1995. Effects of three dietary phytochemicals from tea, rosmary and turmeric on inflammation-induced nitrite production. Cancer Lett 96: 23-29.
Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y., Jeong, W. I., Ryu, S. Y., Do, S. H., Lee, C. S., Song, J. C. and Jeong, K. S. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappa B pathway in lipopolysaccharide-stimulated macrophage. Mol. Cell Biochem. 243: 153-160.
Cobb, J.P., Danner, R.L. 1996. Nitric oxide and septic shock. J. Am. Med. Assoc. 275: 1192-1196.
Cohen, G., Dembiec, D., Marcus, J. 1970. Measurement of catalase in tissue extracts. Anal. Biochem. 34: 30-38.
Coleman, J.W. 2001. Nitric oxide in immunity and inflammation. Int Immunopharmacol 1 (8): 1397-1406.
Coleman, J.W. 2002. Review-Nitric oxide: a regulator of mast cell activation and mast cell-mediated inflammation. Clin. Exp. Immunol. 129: 4-10.
Cook, N. C. and Samman, S. 1996. Flavonoids: Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 66-76.
Cryer, B., Dubois, A. 1998. The advent of highly selective inhibitors of cyclooxygenase-a review. Prostaglandins Other Lipid Mediators. 56: 341-361.
Christianson, D. D., J. P. Friedrich, G. R. List, K. Warner, E. B. Bagley. 1984. A. C. String fellow and G. E. Inglett, J. Food ScL. 49, 229.
Deng, Y. M., Xie, Q. M., Zhang, S. J., Yao, H. Y., Zhang, H. 2007. Anti-asthmatic effects of perilla seed oil in the guinea pig in vitro and in vivo. Planta Med. 73 (1): 53-8.
Deutsch, J. C. 2000. Review: Dehydroascorbic acid. J. Chromatogr. A. 881: 299-307.
Dodeigne, C., Thunus, L., Lejeume, R. 2000. Chemiluminescence as diagnostic tool. A review. Talanta. 51: 415-439.
Fang, Y. Z., Yang, S., Wu, G. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18: 872- 879.
Farrow, B., Evers, B.M. 2002. Infalmmation and the development of pancreatic cancer. Surg Oncol. 10: 153-169.
Fedeli, D., Berrettini, M., Gabryelak, T. and Falcioni, G. 2004. The effect of some tannins on trout erythrocytes exposed to oxidative stress. Mutat. Res. 563: 89-96.
Frederick, A., Kuehl, Jr., Egan, R. W. 1980. Prostaglandins, arachidonic acid, and inflammation. Science. 210: 978-984.
Georgetti, S. R., Casagrande, R., Di Mambro, V. M., Azzolini, A. E., and Fonseca., M. J. 2003. Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method. AAPS PharmSci. 5 (2) Article 20.
George, K. B., Lopes, Herbert, M., Scchulman, and Marcelo, H. L. 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta. 1472: 142-152.
Glauser, M.P., Heumann, D., Baumgartner, J.D., Cohen, J. 1994. Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clin Infect Dis. 18: 205-16.
Groeneveld, P.H.P., Kwappenberg, K.M.C., Langermans, J.A.M., Nibbering, P.H. and Curtis, L. 1997. Relation between pro- and anti-inflammatory cytokines and the production of nitric oxide (NO) in severe sepsis. Cytokine 2(9): 138-142.
Guo, Y., Cai, X., Zhao, X., Shi, R. 2001. Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats. 30 (1): 50-1.
Habig, W. H., Jakoby, W. B. 1974. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
Hamberg, M., Samuelsson, B. 1973. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc. Natl. Acad. Sci. USA. 70 (3): 899-903.
Horn, R. C. and Vargas, V. M. 2003. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay. Mutagenesis. 18: 113-118.
Huang, M. T., Chang, R. L., Wood, A. W., Newmark, H. L., Sayer, J. M., Yagi, H., Jerina, D. M. and Conney, A. H. 1985. Inhibition of the mutagenicity of bay-egion diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid, hydroxylated anthraquinones and hydroxylated cinnamic acid derivatives. Carcinogenesis. 6: 237-242.
Ishikura, N. 1981. Anthocyanins and flavones in leaves and seeds of perilla plant. Agriculture, Biology, Chemistry. 45: 1855-1860.
Jacob, R. A. 1994. Nutrition, health and antioxidants. INFORM. 11: 1271-1275.
Jansen, E. H., van den Berg, R. H., Zomer, G. 1989. Characteristics and detection principles of a new enzyme label producing a long-term chemiluminescent signal. J. Biolumin. Chemilumin. 4: 129.
Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of northern willows:methods for the analysis of certain phenolics. J. Agric Food Chem. 33:213-7.
Kalt, W., Forney, C. F., Martin, A. and Prior, R. L. 1999. Antioxidant capacity, Vitamin C, phenolics and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 47: 4638-4644.
Kim, H., Lee, H. S., Chang, K. T., Ko, T. H., Baek, K. J., Kwon, N. S. 1995. Chloromethyl ketones block induction of nitric oxide synthase in murine macrophages by preventing activation of nuclear factor-kappa B. J. Immunol. 154: 4741-4748.
Kim, K. M., Chun, S. B., Koo, M. S., Choi, W. J., Kim, T. W. and Kim, Y. M. 2001. Differential regulation of NO avalibility from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Rad Biol Med 30(7): 747-756.
Kirkman, H. N., Galiano, S., Gaetani, G. F. 1987. The function of catalase-bound NADPH. J. Biol. Chem. 262: 660-666.
Knowles, R.G., Moncada, S. 1994. Review article-nitric oxide synthases in mammals. Biochem. J. 298: 249-258.
Komaki, C., Okuno, M., Onogi, N., Moriwaki, H., Kawamori, T., Tanaka, T., Mori, H., Muto, Y. 1996. Synergistic suppression of azoxymethane-induced foci of colonic aberrant crypts by the combination of beta-carotene and perilla oil in rats. Carcinogenesis. 17 (9): 1897-1901.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680-685.
Lehere, R. I., Ganz, T., Selsted, M. E., Babior, B. M., Curntte, J.T. 1988. Neutrophils and host defense. Ann. Intern. Med. 15: 127-142.
Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. 1999. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10): 1945-1952.
Lin, M. T., Kuo, T. J., Lin, C. T. 1998. Molecular cloning of a cDNA encoding copper /zinc superoxide dismutase from papaya fruit and overexpression in Escherichia coli. J. Agric. Food Chem. 46: 344-348.
Liu, L. L., Gong, L. K., Wang, H., Xiao, Y., Wu, X. F., Zhang, Y. H. Xue, X., Qi, X. M., Ren, J. 2008. Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock. Biochemical Pharmacology 75: 914-922.
Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V. and Dolara. 2001. Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. Eur. J. Nutr. 40: 74-77.
Maarten, F. C. M., Petra, L. M. Wilbert, H. M. and Eric, A. P. 1999. Glutathione and glutathione-related enzymes in reproduction a review. European Journal of Obs. Gynecol. Reprod. Biol. 82: 171-184.
Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474.
Mau, J. L., Ko, P. T., Chyau, C. C. 2003. Aroma characterization and antioxidant activity of supercritical carbon dioxide extracts from Terminalia catappa leaves. Food Research International. 36: 97-104.
Mello, L. D., Kubota, L. T. 2007. Biosensors as a tool for the antioxidant status evaluation. Talanta. 72: 335-348.
Merenyi, G., Lind, J., Erikson, T. E. 1990. Luminol chemiluminescence: chemistry, excitation, emitter. J. Biolumin. Chemilumin. 5(1): 53-6.
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., Milner, A. 1993. A novel method for measuring anti-oxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science. 84: 407-412.
Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65: 55-63.
Mutraugh, M.P., Foss, D.L. 2002. Inflammatory cytokines and antigen presenting cell activation. Veterinary immunology and immunopathology. 87: 109-121.
Narisawa, T., Fukaura, Y., Yazawa, K., Ishikawa, C., Isoda, Y., Nishizawa, Y. 1994. Colon cancer prevention with a small amount of dietary perilla oil high in alpha-linolenic acid in an animal model. Cancer. 73 (8): 2069-2075.
Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064.
Nathan, C. F. 1987. Secretory products of macrophages. J. Clin. Invest. 79: 319-323.
Nogare, D. 1991. Southwestern Internal Medicine Conference: Septic Shock. Am. J. Med. Sci. 302: 50-65.
Nordberg, J., Arn’er, ESJ. 2001. Reactive oxygen species, antioxidants, and the mammallan thioredoxin system. Free Radical Biol. Med. 31(11): 1287-1312.
Nugteren, D. H., Hazelhof, E. 1973. Isolation and properties of intermediates in prostaglandin synthesis. Biochim. Biophys. Acta. 326: 448-461.
Ohishima H and Bartsch H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mut Res 305: 253-264.
Okamoto, M., Mitsunobu, F., Ashida, K., Mifune, T., Hosaki, Y., Tsugeno, H., Harada, S., Tanizaki, Y., Kataoka, M., Niiya, K., Harada, M. 2000. Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int Arch Allergy Immunol. 122 (2): 137-142.
Okuno, M., Kajiwara, K., Imai, S., Kobayashi, T., Honma, N., Maki, T., Suruga, K., Goda, T., Takase, S., Muto, Y., Moriwaki, H. 1997. Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. Journal of Nutrition. 127 (9): 1752-1757.
Oliveira, E. J., Watson, D. G. 2001. Review: Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. J. Chromatogr. B. 764: 3-25.
Oyaizu, M. 1986. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35: 771-775.
Panthong, A., Tassaneeyakul, W., Kanjanapothi, D., Tantiwachwuttikul, P. and Reutrakul, V. 1989. Anti-inflammatory activity of 5,7-dimethoxyflavone. Planta Med. 55: 133-136.
Patonay, G. 1992. HPLC Detection-newer methods, VCH, New York, Publisers. 111-126.
Pfeiffer, R. 1892. Untersuchungen uber das choleragift. Z. Hyg. 11, 393-412.
Pollockm, J.S., Forsternann, U., Mitchell, J.A., Warner, T.D., Schmidt, H.H.H.W., Nakane, M., Murad, F. 1991. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. 88: 10480-10484.
Qureshi, S.T., Gros, P., Malo, D. 1999. The LPS locus: Genetic regulation of host respones to bacterial lipopolysaccharide. Inflammation Research. 48: 613-620.
Radi, R. A., Rubbo, H. and Prodanov, E. 1989. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalysed reactions. Biochim. Biophys. Acta. 994: 89-93.
Radi, R., Rubbo, H., Thomson, L., Prodanov, E. 1990. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates. Free Radic. Biol. Med. 8(2): 121-126.
Raetz, C.R., Whitfield, C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700.
Reed, P.W. 1969. Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. J. Biol. Chem. 244 (9): 2459-2464.
Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956.
Robards, K., Worsfold, P. 1992. Analytical applications of liquid-phase. chemiluminescence. Anal. Chim. Acta. 266: 147-173.
Rocca, B., FitzGerald, G.A. 2002. Review: Cyclooxygenases and prostaglandins: shaping up the immune response. Int. Immunopharmacol. 2: 603-630.
Ross, R. 1993. The pathogenesis of atherosclerosis: aperspective for the 1990s. [Review] Nature 362: 801-809.
Roswell, D. F., and White, E. H. 1978. The chemiluminescence of luminol and related hydrazides. Methods Enzymol. 57: 409-483.
Roth, E. 1997. Oxygen free radicals and their clinical implications. Acta Chir. Hung. 36: 302-305.
Roxborough, H. E., Mercer, C., McMaster, D., Maxwell, A. P., Young, I. S. 1999. Plasma glutathione peroxidase activity is reduced in haemodialysis patients. Nephron. 81: 278-283.
Scalbert, A. and Williamson, G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073-2085.
Schroeder, H. R.; Yeager, F. M. 1978. Chemiluminescence yields and detection limits of some isoluminol derivatives in various oxidation systems. Analytical chemistry, 50(8).
Sheldon, R., Pinnell, M. D., Durham. 2003. Cutaneous photodamage, oxidative stress, and topical antioxidant protection. North Carolina. J. Am. Acad. Dermatol. 48: 1-19.
Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Shin, H.S. 1997. Lipid composition and nutritional and physiological roles of Perilla seed and its oil. In: Yu H-C, Kosuna K, Haga M, eds. Perilla: The Genus Perilla, Amsterdam: Harwood Academic Publishers.
Silva, F., Borges, F., Guimaraes, C., Lima, J.L.F.C., Matos, C., Reis, S. 2000. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem. 48: 2122-6.
Silva, D., Correia, J., Soldau, K., Christen, U., Tobias, P.S., Ulevitch, R.J. 2001. Liopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. J. Biol Chem. 276: 21129-35.
Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-78.
Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L. 1984. Manganese and iron superoxide dismutases are structural homologs. J. Biol. Chem. 259: 10695-10699.
Sun, L., Tamaki, H., Ishimaru, T., Teruya, T., Ohta, Y., Katsuyama, N., Chinen, I. 2004. Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci. Biotechnol. Biochem. 68 (12): 2613-2615.
Taga, M.S., Miller, E.E., Partt, D.E. 1984. Chin seeds as a source of natural lipid antioxidants. J. Am. Oil. Chem. Soc. 61 : 928-931.
Taniguchi, M., Nomura, R., Kijima, I., Kobayashi, T.1987. Preparation of defatted mustard by extraction with supercritical carbon dioxide. Agric. Biol. Chem. 51 (2): 413-417.
Theriault, A., Chao, J. T., Wang, Q., Gapor, A., Adeli, K. 1999. Tocotrienol: review of its therapeutic potential. Clin. Biochem. 32(5): 309-319.
Tsai, S. H., Lin-Shiau, S. Y., Lin, and J. K. 1999. Suppression of nitric oxide synthase and the down-regulation of the activation of NF-κB in macrophages by resveratrol. Br J. Pharmacol 126: 673-680.
Urbach, F. 1997. Ultraviolet radiation and skin cancer of humans. J. Photochem. Photobiol. 40: 3-7.
Usami, M., Ohata, A., Kishimoto, K., Ohmae, K., Aoyama, M., Miyoshi, M., Fueda, Y. 2006. Phospholipid fatty acid composition and diamine oxidase activity of intestinal mucosa from rats treated with irinotecan hydrochloride (CPT-11) under vegetable oil-enriched diets: comparison between perilla oil and corn oil. Journal of Parenteral and Enteral Nutrition. 30 (2): 124-132.
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and Mazur, M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40.
Villar, J., Maca-Meyer, N., Perez-Mendez, L., Flores, C. 2004. Review-bench-to-bedside review: Understanding genetic predisposition to sepsis. Crit. Care 8: 180-189.
Viriyakosol, S., Tobias, P.S., Kitchens, R.L., Kirkland, T.N. 2001. MD-2 binds to bacterial lipopolysaccharide. J. Biol Chem. 276: 38044-51.
Vural, C., Gungor, A. 2003. Nitric oxide and the upper airways: recent discoveries. Journal of Ear, Nose and Throat: Kbb. 10(1): 39-44.
Weeks, I. Svehla (Ed.), G. 1992. Chemiluminescence mmunoassay Wilson and Wilson’s comprehensive analytical chemistry. Elserier, Amsterdam. 29: 31.
Weisz, A., Oguchi, S., Cicatiello, L., Esumii, H. 1994. Dual mechanism for control of inducible-type NO synthase gene expression in macrophages during activated by interferon-α and bacterial lipopolysaccharide. J. Biol Chem. 269: 8324-8333.
Willams, R. B., Michael, W. P. 1994. Antioxidant nutrients and protection from free radicals. Nutr toxicol.19-48.
Xie, Q.W., Kashiwabara, Y., Nathan, C. 1994. Role of transcription factor NF-kappaB/Rel in induction of nitric oxide synthase. J. Biol Chem. 269: 4705-4708.
Yamaguchi, N., Okada, Y. 1968. Browning reaction products produced by the reaction between sugars and amino acids. VII. Decomposition of lipid hydroperoxide by the browning products. Nippon Shokuhin Kogyo Gakkaishi 15: 187.
Yamamoto, H., Ogawa, T. 2002. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 66 (4): 921-924.
Yamamoto, H., Sakakibara, J., Nagatus, A., Sekiya, K. 1998. Inhibition of arachidonate lipoxygenase from defatted perilla seed. J. Agric. Food Chem. 46: 862-865.
Yokozawa, T., Cho, E. J., Hara, Y. and Kitaani, K. 2000. Antioxidative activity of green tea treeayed with radical initiator 2’-azobis (2-amidinopropane) dihydrochloride. J. Agric. Food Chem. 48: 5068-5073.
Young, I. S., Woodside, J. V. 2001. Antioxidants in health and disease. [Review] J. Clin. Pathol. 54: 176-186.
Zakowski, J. J., Forstrom, J. W., Condell, R. A., Tappal, A. L. 1978. Attachment of selenocysteine in the catalytic site of glutathione peroxidase. Biochem. Biophys. Res. Commun. 84: 248-253.
Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top