跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉彥廷
研究生(外文):Yen-Ting Yeh
論文名稱:基於深度可調三維模型以產生車輛環周影像之研究
論文名稱(外文):On Generating Vehicle Surrounding Images Based on Depth-Adaptive 3D Model
指導教授:洪一平洪一平引用關係
口試委員:黃彥男陳祝嵩徐繼聖
口試日期:2014-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊網路與多媒體研究所
學門:電算機學門
學類:網路學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:28
中文關鍵詞:車輛環周監視系統視像內插影像縫合混合式投影模型車輛安全空間計算深度可調三維模型
外文關鍵詞:vehicle surrounding monitoringview interpolationimage stitch-inghybrid projection modelfree space calculationdepth-adaptive 3D model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:788
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
車輛駕駛人常因為車體本身的視覺盲點而造成交通意外,現有的車輛輔助系統常利用警示燈號或聲響來提供駕駛車輛環周狀況。由於鏡頭的售價漸趨便宜,目前車廠也將攝影機架設於車輛周圍,並將攝取到的影像或是車輛上方的鳥瞰影像顯示於車內,作為安全駕駛輔助視訊系統。相對於固定的鳥瞰視角,我們提出了一使用第三人稱視角的車輛環周監視系統─“天使之眼”。我們接合車輛四周的魚眼攝影機所擷取的影像,將環周影像投影在一混合式3D 模型中,並提供不同視角的影像,使得駕駛者可自由轉換視角。
但因系統未知車輛周圍前景物的深度,在視覺呈現上,會有前景物的影像扭曲或是鬼影的現象產生。所以我們將深度攝影機加裝於汽車上,並透過擷取到的障礙物深度資訊,設計了一個會隨深度資訊不同而調整的3D 投影模型,以解決影像接合處的鬼影問題,並減低車輛周圍物體的影像扭曲。

Driving assistance systems help drivers to avoid car accidents by provid-ing warning signals or visual cues of surrounding situations. Instead of the fixed bird’s-eye view monitoring proposed in many previous works, we de-veloped a real-time vehicle surrounding monitoring system, ”Angel Eye”, that can assist drivers to perceive the vehicle surrounding situations more easily. In our system, four fisheye cameras are mounted around a vehicle. To inte-grate these four fisheye camera views, we firstly use fisheye camera calibra-tion method to dewarp the captured images into perspective projection ones. Then, we calculated the camera intrinsic parameters and homography trans-form matrix to get the camera extrinsic parameters. To stitch these dewarpped images, we projected undistorted images into a 3D hybrid projection model and finally the images of the selected viewpoint are rendered.
However, the unknown position of foreground obstacles would cause some visual noises, like image distortion of objects or ghost effect. So we add depth camera into previous system to obtain the depth information of foreground obstacles. The proposed 3D model can be adjusted based on the distance between vehicle and foreground obstacles. The depth-adaptive model can fa-cilitate the rendering of vehicle surroundings in a more realistic and correct way.

口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
1 Introduction 1
1.1 Background and Motivation . . . 1
1.2 Organization of the Thesis . . . 3
2 Related Work 4
2.1 Vehicle Surrounding Monitoring System . . . 4
2.2 Model Construction in 3D Scene . . . 5
3 Preprocessing 6
3.1 Fisheye Camera Calibration and Intrinsic Parameters . . . 6
3.2 Homography and Extrinsic Parameters . . . 8
4 Vehicle Surrounding Monitoring Using Static 3D Model 10
4.1 View Interpolation Using Static 3D Model . . . 11
4.2 Model Comparison . . . 12
4.3 Lookup Table . . . 14
4.4 Experimental Setup . . . 14
4.5 Results and Discussion . . . 15
5 Vehicle Surrounding Monitoring Using Depth-Adaptive 3D Model 17
5.1 Depth Image Processing . . . 17
5.2 Depth-Adaptive Model Construction . . . 21
5.3 Rendering Results and Discussion . . . 22
6 Conclusion and Future Work 25
References 26

[1] NISSAN | Around View Monitor TECHNOLOGICAL DEVELOPMENT ACTIVITIES.
[2] LUXGEN | Eagle View+ 360° surround imaging system.
[3] Honda Worldwide | ”Honda Develops New Multi-View Camera System to Provide View of Surrounding Areas to Support Comfortable and Safe Driving”.
[4] Fujitsu United States | 360° Wrap-Around Video Imaging Technology.
[5] Tobias Ehlgen and Tomas Pajdla. Monitoring surrounding areas of truck-trailer combinations. In Proceedings of the 5th International Conference on Computer Vision
Systems, number Icvs, 2007.
[6] Yu-Chih Liu, Kai-Ying Lin, and Yong-Sheng Chen. Bird’s-Eye View Vision System for Vehicle Surrounding Monitoring. In Proceedings of 2nd International Workshop,
RobVis 2008, volume 4931/2008 of Lecture Notes in Computer Science, pages 207–218. Springer, 2008.
[7] Mengmeng Yu and Guanglin Ma. 360° Surround View System with Parking Guidance. SAE International Journal of Commercial Vehicles, pages 7(1):19–24, April 2014.
[8] Susumu Kubota, Tsuyoshi Nakano, and Yasukazu Okamoto. A Global Optimization Algorithm for Real-Time On-Board Stereo Obstacle Detection Systems. In 2007 IEEE Intelligent Vehicles Symposium, pages 7–12. IEEE, June 2007.
[9] Andreas Wedel, Uwe Franke, Hernan Badino, and Daniel Cremers. B-spline modeling of road surfaces for freespace estimation. In 2008 IEEE Intelligent Vehicles Symposium, pages 828–833. IEEE, June 2008.
[10] Hern&;#225;n Badino, Uwe Franke, and Rudolf Mester. Free space computation using stochastic occupancy grids and dynamic programming. In Proc. International Conference on Computer Vision, Workshop on Dynamical Vision, Rio de Janeiro, Brazil, page 20, 2007.
[11] Hern&;#225;n Badino, Uwe Franke, and David Pfeiffer. The stixel world-a compact medium level representation of the 3d-world. In Proceedings of the 31st DAGM Symposium on Pattern Recognition,, pages 51—-60, 2009.
[12] David Pfeiffer and Uwe Franke. Efficient representation of traffic scenes by means of dynamic stixels. In 2010 IEEE Intelligent Vehicles Symposium, pages 217–224. IEEE, June 2010.
[13] David Pfeiffer and Uwe Franke. Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In Procedings of the British Machine Vision Conference 2011, pages 1—-12. British Machine Vision Association, 2011.
[14] David Pfeiffer, Friedrich Erbs, and Uwe Franke. Pixels , Stixels , and Objects. In Andrea Fusiello, Vittorio Murino, and Rita Cucchiara, editors, Proceedings of the
12th European Conference on Computer Vision(ECCV’12), Workshops and Demonstrations, volume 7585 of Lecture Notes in Computer Science, pages 1–10, Berlin, Heidelberg, October 2012. Springer Berlin Heidelberg.
[15] Rodrigo Benenson, Radu Timofte, and Luc Van Gool. Stixels estimation without depth map computation. In Proc. International Conference on Computer Vision, Computer Vision Workshops, pages 2010—-2017, 2011.
[16] Zhengyou Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(November 2000):1330–1334, 2009.
[17] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. Proceedings of the 20th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’93, pages 279–288, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top