跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林漢樺
研究生(外文):Han-Hua lin
論文名稱:薄膜蒸餾處理都市污水廠放流水之探討
論文名稱(外文):A study on membrane distillation for effluent stream treatment from municipal wastewater treatment plant
指導教授:莊清榮莊清榮引用關係
指導教授(外文):Ching-Jung Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:薄膜蒸餾都市污水再生水
外文關鍵詞:Membrane distillationdomestic sewagereclaimed water
相關次數:
  • 被引用被引用:5
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因氣候變遷及工業用水需求增加等導致台灣近年來常發生缺水危機,因此以再生水解決缺水問題甚被重視。基於生活污水及事業廢水等之放流水是一穩定水源,以其產製再生水甚有發展之潛力。
本研究利用薄膜蒸餾進行迪化污水廠之放流水產製再生水之探討,實驗分為直接接觸式薄膜蒸餾(DCMD)模場試驗及氣隔式薄膜蒸餾(AGMD)實驗室模組試驗,皆採用平板式模組,前者目的在於長效數據的取得,而後者則在於膜面結垢清洗試驗,另一方面也進行AGMD之產水能耗的模擬分析。
模場DCMD試驗結果顯示,操作條件為進料溫度60℃,Re= 9500,滲透液端35℃及Re= 3200,每日操作4小時,經2個月操作其通量衰減甚微,約為15 kg/m2hr。SEM-EDS分析結果顯示,膜面有些許有機結垢物。藉由量測進料端及滲透端電導度所推算之離子阻擋率大於99%,若針對單一離子(Cl-)之濃度量測,其阻擋率達99.9%。
實驗室AGMD試驗結果顯示,產水水質COD為10.32 ppm、Cl-濃度為1.55 ppm及NH4+為2.89 ppm,整體而言優於RO產水水質。膜面結垢清洗試驗結果顯示,利用0.1% NaOH及0.8% EDTA四鈉(40℃)當作清洗液,可有效將膜面上結垢物洗除並使通量回復至初始通量。本研究最後則藉由Memstill®概念,加入回流,進行平板式AGMD產水耗能模擬,薄膜有效面積為1×1 m2,進料及冷水入口溫度分別為80及30℃、流速0.01 m/s且回流比0下,有最低產水耗能為106.8 kWh/m3且通量為5.5 kg/m2hr。
Due to climate change and the increasing demand of water for industry, Taiwan frequently faces an acute problem of water scarcity in recent years. Therefore, much attention has been paid for using reclaimed water to solve the problem of water shortage. Based on the effluents of domestic sewage and industrial waste water are large and stable water resources, the production of reclaimed water from these effluents will have great potential.
In this study, membrane distillation was used for effluent treatment from Dihua sewage treatment plant (STP) to produce the reclaimed water. Experiments were divided into direct contact membrane distillation (DCMD) pilot test and air gap membrane distillation (AGMD) laboratory module test, the former was used for long-term data obtained while the latter was designed to implement the cleaning test for fouled membrane. In addition, simulation analysis for energy consumption of AGMD to produce reclaimed water from STP was also carried out in this study.
Pilot DCMD test using flat sheet module with ePTFE membrane was conducted under feed temperature at 60℃and Re= 9500 while the permeate side at 35℃and Re=3200.The flux decline obtained by 4 hours operation per day and 2 month continuous operation is not significant, its value being about 15 kg/m²hr. Based on the measurement of conductivity in feed and permeate, respectively, to determine the ion rejection, results showed that the ion rejection reaches 99%. By measuring the Cl- ion concentration, it appeared that the rejection was 99.9%. SEM-EDS analysis for fouled membranes showed that the fouling components are mainly from organic matters. Based on the COD, Cl- and NH4+ measured from the produced water, it clearly indicated that the water quality from MD is better than that by RO.
Experimental results of AGMD showed that 0.1 wt% NaOH or 0.8 wt% EDTA-4Na solution can wash away the fouling on the membrane surface and the cleaned membrane has flux nearly same as that from virgin membrane. Based on Memstill® concept for heat recovery, the thermal energy consumption of AGMD was also estimated. Under the given conditions of flat plate module 1x1 m2 , temperatures of feed inlet and after heater were at 80 and 30℃, respectively, and the superficial flow velocity in the module channel was 0.01 m/s, the thermal energy consumption estimated was 106.8 kWh/m3 and the flux was 5.5 kg/m2hr.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
第2章 文獻回顧 3
2.1 再生能源及各類再生能源比較 3
2.2 再生水 7
2.2.1 發展趨勢及水質標準 8
2.3 薄膜蒸餾概述 12
2.3.1 薄膜蒸餾的操作種類 13
2.3.2 薄膜蒸餾的優點 16
2.4 薄膜蒸餾影響因素 18
2.4.1 薄膜特性 18
2.4.2 進料液體特性 20
2.4.3 薄膜積垢 23
2.5 系統設計 24
第3章 理論背景 28
3.1 薄膜蒸餾傳輸機制 28
3.2 直接接觸式薄膜蒸餾 32
3.2.1 質量傳輸 32
3.2.2 熱量傳輸 34
3.3 氣隔式薄膜蒸餾 37
3.3.1 質量傳輸 37
3.3.2 熱量傳輸 38
3.4 AGMD程序模擬 41
第4章 實驗裝置與步驟 44
4.1 實驗材料與條件 44
4.2 實驗裝置 46
4.3 分析儀器 53
4.4 實驗步驟 54
4.5 實驗注意事項 57
第5章 結果與討論 58
5.1 迪化DCMD模場試驗 58
5.1.1 批次連續濃縮之通量及水質 58
5.1.2 膜面結垢分析 69
5.2膜面結垢清洗試驗 76
5.2.1 連續濃縮操作下之通量及膜面結垢 76
5.2.2 NaOH清洗膜面 79
5.2.3 EDTA四鈉清洗膜面 82
5.2.4 三聚磷酸鈉清洗膜面 85
5.3 AGMD產水能耗模擬 88
第6章 結論 95
符號說明 95
參考文獻 101
附錄一 104

Figure 2-1 Heat and mass transfer in DCMD【Qtaishat et al.,2008】 12
Figure 2-2 Direct Contact Membrane Distillation (DCMD) 13
Figure 2-3 Air-Gap Membrane Distillation (AGMD) 14
Figure 2-4 Sweeping-Gas Membrane Distillation (SGMD) 15
Figure 2-5 Vacuum Membrane Distillation (VMD) 16
Figure 2-6 Schematic of polarization in DCMD【Khayet et al.,2011】 22
Figure 2-7 Schematic drawing of AGMD set-up.【Koeman-Stein et al.,2016】 25
Figure 2-8 Principle of Memstill® process.【Meindersma et al.,2006】 25
Figure 2-9 Internal heat recovery in DCMD 【Criscuoli,2016】. 26
Figure 2-10 DCMD-AGMD flow sheets 【Criscuoli,2016】. 27
Figure 3-1 Regions and mechanisms of mass transport the membrane with pore size distribution.【Phattaranawik et al.,2003a】 31
Figure 3-2 Electrical analogy of modified heat transfer model.【Qtaishat et al.,2008】 34
Figure 3-3 Schematic for the heat and mass transfer inside the AGMD module.【Khalifa et al.,2015】 37
Figure 3-4 Schematic flow diagram. 42
Figure 3-5 Flow diagram of the algorithm for the prediction of the permeate flux. 43
Figure 4-1 Wastewater treatment process. 45
Figure 4-2 Process flow diagram of Dihua DCMD system. 48
Figure 4-3 Schematic diagram of Dihua DCMD flat-sheet module. 50
Figure 4-4 Process flow diagram of the AGMD system. 51
Figure 4-5 Schematic diagram of AGMD flat-sheet module. 52
Figure 5-1 Time-dependent flux of pilot DCMD operation with Dihua treatment plant effluent(a)2017/2~2017/3 (b)2017/4 (c)2017/5. 61
Figure 5-2 Time-dependent flux of Lab-DCMD experiments with Dihua treatment plant effluent.【鄭,2016】 62
Figure 5-3 Time-dependent conductivity of permeate from pilot DCMD operation with Dihua treatment plant effluent(a)2017/2~2017/3 (b)2017/4 (c)2017/5. 64
Figure 5-4 The ion rejection of pilot DCMD operation with Dihua treatment plant effluent (a)2017/2~2017/3 (b)2017/4 (c)2017/5. 66
Figure 5-5 The SEM images of membrane surface after one month operation with Dihua treatment plant effluent(2017/3) (a) virgin (b) top membrane1 (c) top membrane2 (d)down membrane1 (e) down membrane2. 72
Figure 5-6 The SEM images of membrane surface after two months operation with Dihua treatment plant effluent(2017/5) (a) top membrane1 (b) top membrane2 (c)down membrane1 (d) down membrane2. 74
Figure 5-7 The EDS analysis of membrane surface after one month operation with Dihua treatment plant effluent (2017/3). 75
Figure 5-8 The EDS analysis of membrane surface after two months operation with Dihua treatment plant effluent (2017/5). 75
Figure 5-9 The FTIR analysis of membrane surface after one month operation with Dihua treatment plant effluent. 76
Figure 5-10 The SEM images of membrane surface (a)virgin (b)after 24hr AGMD operation with Dihua treatment plant effluent. 78
Figure 5-11 The EDS images of membrane surface after 24hr AGMD operation with Dihua treatment plant effluent. 78
Figure 5-12 The SEM images of membrane surface after NaOH washing. 81
Figure 5-13 The EDS analysis of membrane surface after NaOH washing. 81
Figure 5-14 The SEM images of membrane surface after EDTA-4Na washing. 84
Figure 5-15 The EDS analysis of membrane surface after EDTA-4Na washing. 84
Figure 5-16 The SEM images of membrane surface after Na5P3O10 washing. 86
Figure 5-17 The EDS analysis of membrane surface after Na5P3O10 washing. 87
Figure 5-18 Schematic flow diagram with Tf,in= 60℃, Tc,in= 30℃. 92

Table 2-1各類再生能源優缺比較. 【莊,2016】 5
Table 2-1各類再生能源優缺比較(續) .【莊,2016】 6
Table 2-2包裝及盛裝飲用水用水規格需求.【包裝飲用水及盛裝飲用水衛生標準,2013】 9
Table 2-3 The InternationalTechnology Roadmap for Semiconductors(ITRS)2005年版 超純水水質要求.【無塵室設備技術概論(二)超純水供給設備,2008】 10
Table 2-4工業冷卻用水.【朱,2014】 10
Table 2-4工業冷卻用水(續).【朱,2014】 11
Table 4-1 Composition of Dihua treatment plant effluent.(2016年度平均) 44
Table 4-2 Operating steps of Dihua DCMD system. 54
Table 5-1 Composition of Dihua treatment plant effluent(2017/2-5月平均). 60
Table 5-2 Cl- concentrations in feed and permeate side solution of pilot DCMD test with Dihua treatment plant effluent . 66
Table 5-3 The analysis of feed and permeate solution with Dihua treatment plant. 68
Table 5-4 The flux、conductivity、pH value and ion rejection of NaOH washing experiment. 80
Table 5-5 Cl- concentrations in feed side and permeate side solution after NaOH washing. 81
Table 5-6 The analysis of feed and permeate solution of NaOH washing. 82
Table 5-7 The flux、conductivity、pH value and ion rejection of EDTA-4Na washing experiment. 83
Table 5-8 Cl- concentrations in feed side and permeate side solution after EDTA-4Na washing. 83
Table 5-9 The analysis of feed and permeate solution of EDTA-4Na washing. 84
Table 5-10 The flux、conductivity、pH value and ion rejection of Na5P3O10 washing experiment. 86
Table 5-11 Cl- concentrations in feed side and permeate side solution after Na5P3O10 washing. 86
Table 5-12 The analysis of feed and permeate solution of Na5P3O10 washing. 87
Table 5-13 The fixed parameters for simulating MD flux and energy consumption. 92
Table 5-14 The effect of different parameters on flux and thermal energy consumption.(Recycle) 93
Table 5-15 Transport resistances of the individual compartment at different RR. 94
Table 5-16 Multistage pilot and commercial solar-powered membrane distillation system.【Camacho et al,2013】 94
Alkhudhiri, A., et al. “Treatment of high salinity solutions:Application of air gap membrane distillation. ” Desalination,287 (2012) 55-60.

Alkhudhiri, A., Darwish, N. and Hilal, N., “Membrane distillation: A comprehensive review,” Desalination,287 (2012) 2-18.

Camacho, L.M., Dumée, L., Zhang, J., de Li, J., Duke, M., Gomez, J., and Gray, S., “Advances in Membrane Distillation for Water Desalination and Purification Applications,” Water, 5 (2013) 94-196.

Criscuoli, A., “Improvement of the Membrane Distillation performance through the integration of different configurations,” Chemical Engineering Research and Design,111 (2016) 316-322.

Drioli, E., Ali, A. and Macedonio, F., “Membrane distillation: Recent developments and perspectives, ” Desalination,356 (2015) 56-84.

Fard, A. K., et al. “Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant, ” Desalination, 379 (2016) 172-181.

Gryta, M. “Water desalination using membrane distillation with acidic stabilization of scaling layer thickness, ” Desalination,365 (2015) 160-166.

Jacob, P., et al. “Direct contact membrane distillation for anaerobic effluent treatment,” Journal of Membrane Science,475 (2015)330-339

Khalifa, A., Lawal, D., Antar, M. and Khayet, M., “Experimental and theoretical investigation on water desalination using air gap membrane distillation,” Desalination,376 (2015) 94-108.

Khayet, M., “Membranes and theoretical modeling of membrane distillation: A review,” Advances in Colloid and Interface Science,164 (2011) 56-88.

Khayet, M., Velázquez, A. and Mengual, J. I.,“Modelling mass transport through a porous partition: effect of pore size distribution, ” Journal of Non-Equilibrium Thermodynamics,29 (2004) 279-299.
Kim, S., et al. “Application of direct contact membrane distillation process to treat anaerobic digestate,” Journal of Membrane Science,511 (2016) 20-28.

Koeman-Stein, N. E., et al. “Membrane distillation of industrial cooling tower blowdown water, ” Water Resources and Industry,14 (2016) 11-17.

Lawson, K.W. and Lloyd, D.R., “Review membrane distillation,” Journal of Membrane Science,124 (1997) 1-25.

Lyu, S., Chen, W., Zhang, W., Fan, Y. and Jiao, W., “Wastewater reclamation and reuse in China: Opportunities and challenges,” Journal of Environmental Science,39 (2016) 86-96.

Meindersma, G.W., Guijt,C.M. and de Haan, A.B., “Desalination and water recycling by air gap membrane distillation,” Desalination, 187 (2006) 291-301.

Naidu, G., Jeong, S. and Vigneswaran, S., “Influence of feed/permeate velocity on scaling development in a direct contact membrane distillation, ”Separation and Purification Technology, 125 (2014) 291-300.

Pangarkar, B.L., Deshmukh, S.K., “Theoretical and experimental analysis of multi-effect air gap membrane distillation process (ME-AGMD),” Journal of Environmental Chemical Engineering,3 (2015) 2127-2135.

Phattaranawik, J., Jiraratananon, R. and Fane, A.G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation,” Journal of Membrane Science,215 (2003a) 75-85.

Qtaishat, M., Matsuura, T., Kruczek, B. and Khayet, M.,“Heat and mass transfer analysis in direct contact membrane distillation, ” Desalination,219 (2008) 272-292.

Rochd S. , et al.“Modelisation of Membrane Distillation: Mass and Heat Transfer in Air Gap Membrane Distillation. ”Journal of Membrane Science,6 (2016).

Schofield, R.W., “Membrane Distillation,” Ph.D. Thesis,University of New South Wales (1989).

Srisurichan, S., Jiraratananon, R. and Fane, A.,“Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,”Journal of Membrane Science, 277 (1-2) (2006) 186-194.

Tomaszewska, M., Gryt, M. and Morawski, A.W., “A study of separation by the diect contact membrane distillation process,” Separations Technology,4 (1994) 244-248.

Zhao, L., et al. “Flux enhancement in membrane distillation by incorporating AC particles into PVDF polymer matrix. ”Journal of Membrane Science,500 (2016) 46-54.

經濟部水利署(2015),「再生水資源發展條例」。

莊清榮(2016) “再生能源於再生水廠之應用研究(2/2) ”。

莊順興(2011) “廢污水回收再利用技術評估”,財團法人中技社。

鄭于廷(2016) “薄膜蒸餾產製再生水之實驗探討”,碩士學位論文,中原大學化學工程學系,桃園市

朱敬平(2014) “半導體廠及光電廠廢水回收措施概況”,財團法人中興工程顧問社,台北市

趙幼梅(2013) “中鋼公司廢水回收系統實績說明”

蔡孟揚(2010) “直接接觸薄膜蒸餾平板模組放大規模及電漿改質薄膜之薄膜蒸餾分析”,碩士學位論文,中原大學化學工程學系,桃園市.

蔡宗佑(2013) “薄膜液體貫穿壓力(LEP)之研究”,專題研究論文,中原大學化學工程學系,桃園市

孫文敏(2003) “反滲透膜的化學清洗”, 秦皇島晨礱飲用水有限責任公司

韋宗楒(2008) “無塵室設備技術概論(二)超純水供給設備”,中華水電冷凍空調月刊
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊