跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪正凡
研究生(外文):Jeng-Fan Hung
論文名稱:密封機制與洩漏特性分析
論文名稱(外文):Analysis of seal mechanisms and leak characteristics
指導教授:鄭榮和
指導教授(外文):Jung-Ho Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:密封機制表面粗糙度洩漏有限元素分析
外文關鍵詞:valveseal mechanismssurface roughnessleakagefinite element analysis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:953
  • 評分評分:
  • 下載下載:165
  • 收藏至我的研究室書目清單書目收藏:1
洩漏在流體傳輸系統之中,一直是難克服的問題,而密封技術的發展則是解決洩漏問題的重要關鍵。不同的密封機制決定不同的流體洩漏途徑,當洩漏源自於接觸面之表面微小孔隙時,洩漏路徑則由表面粗糙突起的變形來決定;若洩漏源自於接觸面間的間隙生成時,洩漏路徑則由間隙的大小與分佈來決定。
惟面粗度變形與間隙生成難於觀測,而以實驗求得之洩漏量關係,其應用範圍有限且難於提供改善的基礎,因此,如何掌握各設計變因對密封的影響,與洩漏量的關係,並應用在密封結構的設計之上,是本研究之重點。
本研究針對兩種流體控制元件:隔膜閥與球閥,利用有限元素模擬,取得實驗難於觀測之接觸面表面變形參數,並依不同之密封特性配合表面變形參數,定義與建立不同之洩漏預測模型,提供為改善密封結構洩漏問題之設計參考工具。

Leakage has been a difficult problem to tackle in fluid transmission systems, and the development of sealing technique is the key to solve it. Different seal mechanisms cause different fluid leaking paths. If leakage results from the micro voids on the interface between contact surfaces, the path is determined by the deformation of the surface roughness; if leakage results from gaps generated between contact surfaces, the path is determined by the size and distribution of the gaps generated.
However, the deformation of surface roughness and gap generation are difficult to observe, and the leakage curves obtained from experiments are limited and cannot provide the foundation of improvement. Therefore, how to get the relationship between leakage and design factors is the major subject of this research.
This research aims two kinds of fluid control components: diaphragm valve and ball valve, using finite element analysis to obtain interface deformation parameters, which are difficult to observe in experiments. According to different seal mechanisms, leakage prediction models are defined and established which can be provide as design tools to solve leakage problems of seal structures.

第一章 緒論 1-1
1.1前言1-1
1.2密封構造分類1-2
1.2.1唇端迫緊(Lip-Packing)1-2
1.2.2 O形環(O-Ring)1-3
1.2.3 填函填料(Gland Packing)1-4
1.2.4 密合墊(Gaskets)1-4
1.2.5 油封(Oil Seal)1-4
1.2.6 機械軸封(Mechanical Seal)1-5
1.2.7 曲折填封(Labyrinth Packing)1-5
1.2.8 膜片密封(Diaphragm Seal)1-5
1.3研究動機與目的1-6
1.4研究流程與方法1-7
1.5使用軟體簡介1-8
1.5.1 網格產生器1-8
1.5.2 有限元素分析軟體1-8
1.6論文架構1-9
第二章 隔膜閥與球閥之簡介 2-1
2.1閥2-1
2.2隔膜閥2-2
2.2.1隔膜閥之原理與應用2-2
2.2.2隔膜閥之密封構造2-2
2.2.3隔膜閥之密封問題探討2-3
2.3球閥2-3
2.2.1球閥之原理與應用2-3
2.2.2球閥之密封構造2-4
2.2.3球閥之密封問題探討2-5
第三章 理論背景與文獻回顧 3-1
3.1密封洩漏機制3-1
3.2洩漏量計算之研究3-2
3.3面粗度變形理論3-4
3.4結合面粗度變形之洩漏量計算3-6
3.5有限元素模型3-8
3.6隔膜閥之相關研究3-9
3.7球閥之相關研究3-9
3.8結論3-11
第四章 有限元素洩漏模型 4-1
4.1流量計算洩漏模型4-1
4.2.1流量計算模型的假設4-2
4.2.1流量計算模型的建立4-2
4.2面粗度洩漏模型4-3
4.2.1面粗度洩漏模型的假設4-3
4.2.2表面變形參數考量4-4
4.2.3面粗度洩漏模型的建立4-4
4.2.4面粗度洩漏模型之限制4-5
第五章 隔膜閥洩漏模型之建立與應用 5-1
5.1實驗程序與結果5-1
5.1.1實驗流程5-1
5.1.2實驗儀器5-2
5.1.3實驗結果5-3
5.1.4實驗結果討論5-5
5.2有限元素模擬5-6
5.2.1有限元素分析流程5-6
5.2.2隔膜閥之實體模型5-7
5.2.3網格建立與元素選用5-7
5.2.4材料常數5-8
5.2.5邊界條件與受力程序5-9
5.2.6模擬結果討論5-10
5.2.7有限元素分析總結5-13
5.3建立以接觸面變形為參數之洩漏預測模型5-13
5.3.1模型建立5-14
5.3.2模型驗證5-15
5.4建立以接觸面壓力為參數之洩漏預測模型5-16
5.4.1模型建立流程5-16
5.4.2單層膜片之有限元素模擬與洩漏量實驗5-17
5.4.3模型建立5-18
5.4.4模型驗證5-18
5.4.5內圍壓迫之洩漏量探討5-19
5.5洩漏預測模型之應用5-20
5.6綜合結果與討論5-22
第六章 球閥洩漏模型之建立與應用 6-1
6.1建立有限元素模型6-1
6.1.1有限元素分析流程6-1
6.1.2建立實體模型與網格6-1
6.1.3元素應用6-2
6.1.4材料常數6-3
6.1.5合理的假設與簡化6-3
6.1.6邊界條件與受力程序6-4
6.1.7球閥之洩漏探討6-5
6.1.8模擬結果討論6-5
6.2閥座與閥球接觸面之密封特性分析6-6
6.3閥桿與填料環接觸面之密封特性分析6-8
6.4結果與討論6-9
第七章 結論與未來研究方向 7-1
7.1研究成果總結7-1
7.2未來研究方向7-3

[1] 近森德重,密封迫緊技術,復漢出版社,1990。
[2] Y. Matsuzaki and T. Kazamaki, “Effect of surface roughness on compressive stress of static seals,” JSME International Journal, Series III, Vol. 31, No. 1, pp. 99-106, 1988.
[3] T. Nagano, A. Kowada, T. Matumura, Y. Inada and K. Yajima, “Experimental study of leakage through residual shear cracks on r/c walls,” Proc. SMIRT-10, Session Q, pp. 139-144, 1989.
[4] S. H. Rizkalla, B. L. Lau, S. H. Simmonds, “Air leakage characteristics in reinforced concrete,” J. Struc. Eng. ASCE, Vol. 5, pp. 1149-1162, 1984.
[5] T. Suzuki, K. Takiguchi, H. Hotta, “Leakage of gas through concrete cracks,” Nucl. Eng. Des., Vol. 133, pp. 121-130, 1992.
[6] U. Greiner, W. Ramm, “Air leakage characteristics in cracked concrete,” Nucl. Eng. Des., Vol. 156, pp. 167-172, 1995.
[7] J. A. Greenwood and J. B. P. Williamson, “Contact noninally flat surfaces,” Proc. Roy. Soc. (London), pp. 300-319, 1966.
[8] S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 2nd Edition, 1951.
[9] E. J. Abbott and F.A. Firestone, “Specifying surface quantity-a method based on accurate measurement and comparison,” Mech. Engr., Vol. 55, pp. 569, 1933.
[10] J. Pullen and J. B. P. Williamson, “On the plastic contact of rough surfaces,” Proc. Roy. Soc. (London), A327, pp. 159-173, 1972.
[11] P. R. Nayak, “Random Process Model of Rough Surface,” ASME Journal of Lubrication Technology, Vol. 93, pp. 398-407, 1971.
[12] P. R. Nayak, “Random process model of rough surface in plastic contact,” Wear, Vol. 26, pp. 305-407, 1971.
[13] W. R. Chang, I. Etsion and D.B. Bogy, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” Journal of Tribology, Vol. 109, pp. 257-263, 1987.
[14] D. G. Evseev, B. M. Medvedev and G. G. Grigoriyan, “Modification of the elastic-plastic model for the contact of rough surfaces,” Wear, Vol. 150, pp. 79-88, 1991.
[15] N. Patir and H. S. Cheng, “Application of average flow model to lubrication between rough sliding surfaces.” ASME Journal of Lubrication Technology, Vol. 101, pp. 220-230, 1979.
[16] T. Shimomura, K. Kiryu, H. Hirabayashi and T. Nakajima, “A study of the relationship between sealing performance and surface characteristics of end face seals,” STLE Lubrication Engineering, Vol. 45, No. 12, pp. 785-791, 1989.
[17] P. Riva, L. Brusa, P. Imperato, “Prediction of air and steam leak rate through cracked reinforced concrete panels,” Nucl. Eng. Des. Vol. 192, pp. 13-30, 1999.
[18] 黎龍芳,“齒輪幫浦容積效率與公差配合之改善”,,國立台灣大學機械工程研究所碩士論文,2000。
[19] 許嘉元, “金屬密封塑性變形研究”, 國立台灣大學機械工程研究所碩士論文,2000。
[20] F. Yang and I. Kao, “Analysis of the fluid flow and deflection for pressure-balanced MEMS diaphragm valves,” Sensors and Actuators , Vol. 79, pp. 13-21, 2000.
[21] G. Mimmi and P. Pennacchi, “Diaphragm design improvement for a metering pump,” Engineering Failure Analysis, Vol. 8, pp. 1-13, 2001.
[22] Control valves, ISA Standards, Recommended Practices and Technical Reports , 1997.
[23] Ronald C. Merrick, “Valve selection and specification guide,” 1991.
[24] J. W. Hutchison, “ISA handbook of control valves,” 1976.
[25] 胡家琛,閥, 徐氏基金會出版 (1984)。
[26] 楊源泉,閥門設計手冊。
[27] W. Ochonski, “Radial stress distribution and friction forces in a soft-packed stuffing-box seal.” Tribology international, Vol. 21, pp. 31-38, 1988.
[28] S. Pengyun, C. Kunagmin, D. Zongyun, “A theoretical analysis of the lateral pressure coefficients in a soft-packed stuffing-box seal.” Tribology international Vol. 30, PP. 759-765 (1997).
[29] D.F. Denny and D.E. Turnbull, “Sealing characteristics of stuffing-box seals fo rotating,” Proc. Instr. Engrs., Vol. 174(6), pp. 271-284, 1960.
[30] 林進順, “逸散性洩漏之工業用閥中軸防漏設計技術”
[31] R.H. MacDonald, “怎樣選擇石墨” 譯者:林進順
[32] Michael Ridey, “Relieving over-pressure,” Chemical engineering, 1991.
[33] 李盈昌, “球閥之設計與應用”, 機械月刊, 第11卷第9期, 1985。
[34] 溫卓剛, “球閥的介紹與應用”, 機械月刊, 第14卷第6期, 1988。
[35] J. E. Shigley and C. R. Mischke, Mechanical engineering design, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top