跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佳吟
研究生(外文):Chia-Yin Hsieh
論文名稱:舞臺劇產業中訂價對票房之影響
論文名稱(外文):The Impact of Pricing on Ticket Sales in the Theater Industry
指導教授:孔令傑孔令傑引用關係
指導教授(外文):Ling-Chieh Kung
口試委員:余峻瑜郭佳瑋
口試委員(外文):Jiun-Yu YuChia-Wei Kuo
口試日期:2015-06-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:62
中文關鍵詞:票券訂價差別訂價迴歸分析營收管理
外文關鍵詞:ticket pricingprice discriminationregression analysisrevenue management
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在娛樂產業裡,業者透過賣票來販售體驗,舞台劇表演即是生活中常見的一個例子。他們在獲益前便已投入龐大的資金,並透過多次的售票演出來賺取報酬。由於在一場座位有限的演出中,多賣出一個座位所需要付出的邊際成本相對很小,因此演出時若有空位則可視為損失。為了求取獲益最大化,他們最為關心的就是如何在有限資源(如時間、有限座位)下回收最佳的報酬。這樣的議題屬於營收管理的範疇,即在對需求有一定程度的了解下,透過差別訂價的概念,以最有效益的方式分配資源,目的是達到獲利的最大化。
明顯地,在一個演出空間中存在座位好壞的差別。而過去的研究與理論證實,業者可以透過這個差別來調整座位等級的配置以及各等級的價格來獲取更高的利潤。在舞台劇產業中,如此的策略一直有在被執行,但這些決策大多仍是依靠是專業人士的經驗與直覺去決定的。我們相信有系統的科學方法能夠有效的提升他們面臨的不確定性,並且可以有依據的提供他們決策意見,並期望能透過數據研究及分析去支援他們的定價決策。
在這份研究中,我們取得台灣的一個知名兒童劇團最近六年的交易資訊。在將資料加以整理過後,利用線性迴歸模型和數據分析方法找出對銷售數量有顯著影響的環境因子,並分析定價策略上的調動對銷售數量的影響,進而了解台灣區的市場對兒童劇團的需求。另外,我們也將需求由低價到高價區隔為三個群組進行數據分析,找出不同客群對於票價與壅塞的敏感程度,提供分析結果與決策建議給相關業者做為參考。

In the entertainment industry, firms deliver experiences to their customers by selling tickets. Theatrical plays is an example in common. Typically, the marginal cost for selling one more ticket is significantly lower than the sunk investment. Therefore, leaving a seat empty in a performance may be considered as a loss on sale. What a firm is how to make the pricing and related decisions under limited sources (i.e., time, limited seats, etc.) in order to maximize the expected profit. The solution lies in the field of revenue management.
Obviously, there are seats with different quality levels in a performance space. Moreover, from the past experience, implementing price discrimination on those seats can generate more profit. However, most of the decisions are still only based on experts'' experiences and intuitions, and these decisions may be improved by implementing data analysis methods. It is quite important for them to adopt scientific methods to better price tickets and manage the revenue.
In this thesis, an empirical study is conducted for investigating the impact of prices and other factors on sales quantity in the theater industry. We obtain the sales data from a leading theater company in Taiwan. We separate the demands into three price levels to study the different patterns on ticket prices between each other. With several regression models and statistical techniques, analysis results and suggestions for the pricing and scheduling decisions are provided.

誌謝 I
論文摘要 II
THESIS ABSTRACT III
Contents IV
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Research objective 3
1.3 Research methodology 5
1.4 Research plan 6
Chapter 2 Literature review 7
2.1 Revenue management 7
2.2 Pricing strategy of performance goods 9
2.3 Seating arrangement 11
Chapter 3 Problem description and formulation 13
3.1 Demand estimation 13
3.2 Description of the Empirical study 15
Chapter 4 Analysis 17
4.1 The theater data set 17
4.1.1 Data Description 21
4.2 Regression analysis for total sales quantities 25
4.3 Regression analysis for each price segment 29
4.3.1 Sales of low price segment 29
4.3.2 Sales of the medium price segment 31
4.3.3 Sales of high price segment 34
4.3.4 Residuals analysis 35
4.4 Regression analysis for rate of sales of all performances 36
Chapter 5 Conclusions and Future Works 51
5.1 Conclusions 51
5.2 Limitations and future works 52
Bibliography 55
Appendix 57

[1] Alstrup, J., S. Boas, B.G. Madsen, R.V.V. Vidal. 1986. Booking strategies for flights with two passenger types. Journal of Service Research 27(1) 274–288.
[2] Belobaba, P.P. 1987. Survey paper airline yield management an overview of seat inventory control. Transportation Science 21(2) 63–73.
[3] Belobaba, P.P. 1989. OR practice - application of a probabilistic decision model to airline seat inventory control. Operations Research 37(2) 183–197.
[4] Carroll, W.J., R.C. Grimes. 1995. Evolutionary change in product management: Experiences in the car rental industry. Interfaces 25(5) 84–104.
[5] Cheung, S.N.S. 1977. Why are better seats underpriced? Economic Inquiry 15 513–522.
[6] Corning, J., A. Levy. 2002. Demand for live theater with market segmentation and seasonality. Journal of Cultural Economics 26(3) 217–235.
[7] Courty, P. 2000. An economic guide to ticket pricing in the entertainment industry. Louvain Economic Review 66(2) 167–192.
[8] Courty, P., M. Pagliero. 2012. The impact of price discrimination on revenue: Evidence from the concert industry. The Review of Economics and Statistics 94(1) 359–369.
[9] Courty, P., M. Pagliero. 2014. Price discrimination in the concert industry. Working paper, University of Victoria.
[10] Elmaghraby, W., P. Keskinocak. 2003. Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science 49(10) 1287–1309.
[11] Huntington, P. 1993. Ticket pricing policy and box office revenue. Journal of Cultural Economics 17(1) 71–87.
[12] Kimes, S.E., R.B. Chase. 1998. The strategic levels of yield management. Journal of Service Research 1(2) 156–166.
[13] Lai, K.K., W.L. Ng. 2005. A stochastic approach to hotel revenue optimization. Computers and Operations Research 32(5) 1059–1072.
[14] Leslie, P. 2004. Price discrimination in broadway theater. The RAND Journal of Economics 35(3) 520–541.
[15] Marburger, D.R. 1997. Optimal ticket pricing for performance goods. Managerial and Decision Economics 18(5) 375–381.
[16] Rosen, S., A.M. Rosenfield. 1997. Ticket pricing. Journal of Law and Economics 40(2) 351–376.
[17] Schimmelpfennig, J. 1997. Demand for ballet: A non-parametric analysis of the 1995 royal ballet summer season. Journal of Cultural Economics 21(2) 119–127.
[18] Talluri, K.T., G.J. van Ryzin. 2004. The Theory and Practice of Revenue Management. Springer, New York, NY.
[19] Veeraraghavan, S., R. Vaidyanathan. 2012. Measuring seat value in stadiums and theaters. Production and Operations Management 21(2) 49–68.
[20] Weatherford, L.R., S.E. Kimes. 2003. A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting 19(3) 401–415.
[21] Wirtz, J., S.E. Kimes, J.H. Theng, P. Patterson. 2003. Has revenue management become acceptable? findings from an international study on the perceived fairness of rate fences. Journal of Service Research 6(2) 125–135.
[22] Won, D.C., Y.H. Lee. 2008. Optimal dynamic pricing for sports games with habitual attendance. Managerial and Decision Economics 29(8) 639–655.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top