|
1.5參考文獻 [1]J. J. Thomson, Rays of positive Electricity and their Application to Chemical Analysis Green and Co. 1998. [2]M. Karas and F. Hillenkamp, Laser desorption Ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 1988, 60, 2299. [3]K. Tanaka, H. Waki, Y. Ido, S. Akita and Y. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151. [4]R. E. Hoing and J. R. Woolston, Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl. Phys. Lett. 1963, 2, 138. [5]M. A. Posthumus, P. G. Kistemaker and H. L. C. Meuzelaar, Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 1978, 50, 985. [6]B. Linder and U. Seydel, Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal. Chem. 1985, 57, 895. [7]M. Karas, D. Bachmann and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935. [8]K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida, Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. Second Japan-China Joint Symposium on Mass Spectrometry. 1987, 185. [9]L. F. Marvin, M. A. Roberts and L. B. Fay, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica Chimica Acta. 2003, 337, 11. [10]A. Overberg, A. Hassenburger and F. Hillenkamp, Mass Spectrometry in the Biological Sciences: A Tutorial, M. L. Gross Ed, Kluwer Academic Publisher press, Netherlands, 1992, 181. [11]K. K. Murray and K. L. Caldwell, Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix. Appl. Surf. Sci. 1998, 127, 242. [12]M. Kussmann, E. Nordhoff, H. Rahbek-Nielsen, S. Haebel, M. Rossel-Larsen, L. Jakobsen, J. Gobom, E. Mirgorodskaya, A. Kroll-Kristensen and L. Palm, P. Roepstorff, Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. Mass Spectrom. 1997, 32, 593. [13]D. C. Schriemer and L. Li, Detection of high molecular weight narrow polydisperse polymers up to 1.5 million daltons by MALDI mass spectrometry. Anal. Chem. 1996, 68, 2721. [14]R. R. O. Loo and J. A. Loo, Matrix-assisted laser desorption/ionization-mass spectrometry of hydrophobic proteins in mixtures using formic acid, perfluorooctanoic acid, and sorbitol. Anal. Chem. 2007, 79, 1115. [15]R. J. Levis, Laser Desorption and ejection of biomolecules from the condensed phase into the gas phase. Annu. Rev. Phys. Chem. 1994, 45, 483. [16]A. Overberg and M. Karas, Matrix-assisted infrared-laser desorption/ionization MS of large biomolecules. Rapid Commun. Mass Spectom. 1990, 4, 293. [17]U. Bahr, M. Karas and F. Hillenkamp, Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Anal. Chem. 1994, 348, 783. [18]F. Hillenkamp and J. Peter-Katalinic, MALDI-MS: A Practical Guide to Instrumentation, Methods and Applications, 2007. [19]吳慧芬、呂麗琪,「2002年的諾貝爾化學獎-質譜儀分析技術的突破開展生化科技新領域」,科學發展,2003,第362卷,第48-51頁。 [20]K. C. Hung, H. Ding and B. Guo, Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Anal. Chem.1999, 71, 518. [21]Y. Xu, J. T. Wastson and M. L. Bruening, Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Anal. Chem. 2003, 75, 185. [22]J. M. Asara and J. Allison, Enhanced detection of oligonucleotides in UV MADLI MS using the tetraamine spermine as a matrix additive. Anal. Chem. 1999, 71, 2866. [23]R. S. Brown and J. J. Lennon, Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal. Chem. 1995, 67, 1998. [24]M. L. Vestal, P. Juhasz and S. A. Martin, Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1044. [25]L. H. Cohen and A. I. Gusev, Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem. 2002, 373, 571. [26]J. Sunner, E. Dratz and Y. C. Chen, Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335. [27]P. C. Liao and J. Allison, Ionization processes in MALDI: matrix dependence of [M+H]+ vs. [M+Na]+ formation. J. Mass Spectrom. 1995, 30, 408. [28]R. Zenobi and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337. [29]H. Ehring, M. Karas and F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for marix-assisted laser desorption ionization mass spectrometry. Org. Mass Spectrom. 1992, 27, 472. [30]Y. F. Zhu, K. L. Lee, K. Tang, S. L. Allman, N. I. Taranencko and C. H. Chen, Revisit of MALDI for small proteins. Ripid Commun. Mass Spectrom. 1995, 9, 1315. [31]J. A. Mclean, K. A. Stumpo and D. H. Russell, Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 2005, 127, 5304. [32]Y. -F. Huang and H. -T. Chang, Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 4852. [33]N. -C. Chiang, C. -K. Chiang, Z. -H. Lin and H. -T. Chang, Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Rapid Commun. Mass Spectrom. 2009, 23, 3063. [34]M. Schurenberg, K. Dreisewerd and F. Hillenkamp, Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal. Chem. 1999, 71, 221. [35]W. -Y. Chen and Y. -C. Chen, Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI-MS analysis of peptides and proteins. Anal. Bioanal. Chem. 2006, 386, 699. [36]K. -H. Lee, C. -K. Chiang, Z. -H. Lin and H. -T. Chang, Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectom. 2007, 21, 2023. [37]C. -T. Chen and Y. -C. Chen, Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass Spectom. 2004, 18, 1956. [38]S. Y. Xu, Y. F. Li, H. F. Zou, J. S. Qiu, Z. Guo and B. C. Guo, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 6191. [39]W. -Y. Chen, L. -S. Wang, H. -T. Chiu, Y. -C. Chen and C. -Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass. Spectrom. 2004, 15, 1629. [40]S. -F. Ren and Y. -L. Guo, Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun. Mass Spectom. 2005, 19, 255. [41]S. -F. Ren, L. Zang, Z. -H. Chen and Y. -L. Guo, Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbokydrates. J. Am. Soc. Mass. Spectrom. 2005, 16, 333. [42]J. Wei, J. M. Buriak and G. Siuzdak, Desorption–ionization mass spectrometry on porous silicon. Nature, 1999, 399, 243. [43]Z. X. Shen, J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn and G. Siuzdak, Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 2006, 78, 612. [44]S. A. Trauger, E. P. Go, Z. X. Shen, J. V. Apon, B. J. Compton, E. S. P. Bouvier, M. G. Finn and G. Siuzdak, High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 2004, 76, 4484. [45]E. P. Go, J. V. Apon, G. Luo and G. Sagehatelian, Desorption/ionization on silicon nanowires. Anal. Chem. 2005, 77, 1641. [46]X. Wen, S. Dagan and V. H. Wysoki, Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 434. [47]C. -K. Chiang, Z. Yang, Y. -W. Lin, W. -T. Chen, H. -J. Lin and H. -T. Chang, Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010, 82, 4543. [48]W. -T. Chen, C. -K. Chiang, C. -H. Lee and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect proteins and protein-protein complexes. Anal. Chem. 2012, 84, 1924. [49]M. -F. Huang and H. -T. Chang, Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 2012, 3, 2147. [50]W. -T. Chen, M. -F. Huang and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect ss- and ds-oligodeoxynucleotides. J. Am. Soc. Mass Spectrom. 2013, 24, 877. [51]C. -W. Wang, W. -T. Chen and H. -T. Chang, Quantification of saccharides in honey samples through surface-assisted laser desorption/ionization mass spectrometry using HgTe nanostructures. J. Am. Soc. Mass Spectrom. 2014, 25, 1247. 2.5參考文獻 [1]M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 1988, 60, 2299. [2]K. Tanaka, H. Waki, Y. Ido, S. Akita and Y. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151. [3]T. R. Baker, T. Keough, R. L. M. Dobson, M. P. Lacey, T. A. Riley, J. A. Hasselfield and P. E. Hesselberth, Antisense DNA oligonucleotides 11: the use of matrix-assisted laser desorption/ionization mass spectrometry for the sequence verification of methylphosphonate oligodeoxyribonucleotides. Rapid Commun. Mass Spectrom. 1993, 7, 195. [4]W. -T. Chen, C. -K. Chiang, C. -H. Lee and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect proteins and protein-protein complexes. Anal. Chem. 2012, 84, 1924. [5]U. Pieles, W. Zurcher, M. Schar and H. E. Moser, Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993, 21, 3191. [6]M. O. Glocker, S. H. Bauer, J. Kast, J. Volz and M. Przybylski, Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 1996, 31, 1221. [7]L. R. H. Cohen, K. Strupat and F. Hillenkamp, Analysis of quaternary protein ensembles by matrix assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1046. [8]C. -K. Chiang, Z. Yang, Y. -W. Lin, W. -T. Chen, H. -J. Lin and H. -T. Chang, Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010, 82, 4543. [9]W. -T. Chen, M. -F. Huang and H. -T. Chang, Using Surface-assisted laser desorption/ionization mass spectrometry to detect ss- and ds-oligodeoxynucleotides. J. Am. Soc. Mass Spectrom. 2013, 24, 877. [10]S. A. Hofstadler and K. A. Sannes-Lowery, Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat. Rev. Drug Discovery. 2006, 5, 585. [11]J. M. Daniel, S. D. Friess, S. Rajagopalan, S. Wendt and R. Zenobi, Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 2002, 216, 1. [12]A. Tjernberg, S.Carnö, F. Oliv, K. Benkestock, P. -O. Edlund, W. J. Griffiths and D. Halén, Determination of dissociation constants for protein-ligand complexes by electrospray ionization mass spectrometry. Anal. Chem. 2004, 76, 4325. [13]A. Wortmann, M. C. Jecklin, D. Touboul, M. Badertscher and R. Zenobi, Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition. J. Mass Spectrom. 2008, 43, 600. [14]J. L. Beck, M. L. Colgrave, S. F. Ralph and M. M. Shell, Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev. 2001, 20, 61. [15]S. A. Hofstadler and R. H. Griffey, Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chem. Rev. 2001, 101, 377. [16]K. J. Fountain, M. Gilar and J. C. Gebler, Electrospray ionization mass spectrometric analysis of nucleic acids using high-throughput on-line desalting. Rapid Commun. Mass Spectrom. 2004, 18, 1295. [17]L.B. Jennifer, Developments in electrospray ionization mass spectrometry of non-covalent DNA-ligand complexes. Aust. J. Chem. 2011, 67, 705. [18]R. Frański, B. Giercżyk and T. Kozik, Tandem mass spectrometry experiments support the existence of hydrophobic interactions in the gas phase. Rapid Commun. Mass Spectrom. 2008, 22, 2747. [19]R. Sudha and R. Zenobi, The detection and stability of DNA duplexes probed by MALDI mass spectrometry. Helv. Chim. Acta. 2002, 85, 3136. [20]J. A. Bueren-Calabuig, C. Giraudon, C. M. Galmarini, J. M. Egly and F. Gago, Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations. Nucleic Acids Res. 2011, 39, 8248. [21]A. Tholey and E. Heinzle, Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal. Bioanal. Chem. 2006, 386, 24. [22]H. -P. Wu, C. -L. Su, H. -C. Chang and W. -L. Tseng, Sample-first preparation: a method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides .Anal. Chem. 2007, 79, 6215. [23]J. Sunner, E. Dratz and Y. -C. Chen, Graphite surface-assisted laser desorption/ ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335. [24]T. -C. Chiu, L. -S. Huang, P. -C. Lin, Y. -C. Chen, Y. -J. Chen, C. -C. Lin and H. -T. Chang, Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria. Recent Pat. Nanotechnol. 2007, 1, 99. [25]W. -T. Chen and H. -T. Chang, Tea identification through surface-assisted laser desorption/ionization mass spectrometry. Int. J. Anal. Mass Spectrom. Chromatogr. 2013, 1, 11. [26]J. C. Brice and P. Capper, Properties of mercury cadmium telluride. Inspec, London, 1987. [27]T. Yonezawa, H. Kawasaki, A. Tarui, T. Watanabe, R. Arakawa, T. Shimada and F. Mafuné, Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2009, 25, 339. [28]W. D. Lawson, S. Nielsen, E. H. Putley and A. S. Young, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids. 1959, 9, 325. [29]M. -F. Huang and H. -T. Chang, Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 2012, 3, 2147. [30]P. A. Wabnitz and J. A. Loo, Drug screening of pharmaceutical discovery compounds by micro-size exclusion chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 85. [31]M. H. Sheikhha, A. Awan, K. Tobal and J. A. Liu Yin, Prognostic significance of FLT3 ITD and D835 mutations in AML patients. Hematol. J. 2003, 4, 41. [32]N. Li, Y. Ma, C. Yang, L. Guo and X. Yang, Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys. Chem. 2005, 116, 199. [33]L. S. Rosenberg, M. J. Carblin and T. R. Krugh, The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation. Biochem. 1986, 25, 1002. [34]X. J. Dang, M. Y. Nie, J. Tong and H. L. Li, Inclusion of the parent molecules of some drugs with beta-cyclodextrin studied by electrochemical and spectrometric method. J. Electroanal. Chem. 1998, 448, 61. [35]L. S. Rosenberg, M. J. Carblin and T. R. Krugh, The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation. Biochem. 1986, 25, 1002. [36]X. J. Dang, M. Y. Nie, J. Tong and H. L. Li, Inclusion of the parent molecules of some drugs with β-cyclodextrin studied by electrochemical and spectrometric methods. J. Electroanal. Chem. 1998, 448, 61.
|