跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志傑
研究生(外文):Chih-Chieh Chen
論文名稱:爐石水泥砂漿於早齡期養護期間受火害之強度影響研究
論文名稱(外文):Effect of Fire on Compressive Strength of Early Cured Mortars with Ground Granulated Blast Furnace Slag (GGBFS)
指導教授:蔡匡忠蔡匡忠引用關係
指導教授(外文):Kuang-Chung Tsai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:111
中文關鍵詞:殘餘抗壓強度火害溫度早齡期水泥砂漿爐石
外文關鍵詞:residual compressive strengthmortarfire temperatureearly ageGGBFS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討摻用爐石粉之水泥砂漿於養護初期受火害之強度變化,實驗變因包括水膠比(0.4、0.5)、養護齡期(3、7、14、28、56)、火害溫度(300℃、450℃、600℃、850℃、變溫)、再養護時間(火害當日、澆注第35天、火害後再養護21天)。除以熱重分析測試材料性質(30℃~900℃)外,火害前後之試體並進行非破壞性檢測(超音波試驗)及抗壓強度試驗,並由兩試驗結果討論火害對爐石水泥砂漿之強度影響。
結果顯示,爐石水泥砂漿之未受火害原始強度隨養護齡期越長,結構愈緻密,強度越強。熱重分析結果顯示無論多久養護齡期(少於28天之早齡期或超過28天之非早齡期)之試體均有相同的嚴重燒失溫度範圍,因此不同養護齡期對材料本身內部結構應僅有水化產物之產量變化影響,並未改變受熱後之分解產物種類。受火害後超音波波速皆比火害前低,且W/B=0.4火害前後之強度皆較W/B=0.5強;火害後無論養護齡期天數,隨火害溫度越高而強度衰減越明顯,因受高溫火害後內部鍵結裂解,造成結晶水釋出導致孔隙變大、緻密性降低。但W/B=0.4於早齡期受火害450℃及600℃後強度較受300℃火害時高,乃因早期受熱提升水化速率而使強度獲得提升。此外,於W/B=0.5時受火害溫度450℃隔日之強度並未隨火害溫度越高而衰減,反而增加,應為因漿體內部自由水及結晶水脫離,導致水泥熟料(C3S、C2S)與水分子結合成核,核受熱釋出結晶水導致破裂而釋出之部份結晶水與其它未反應之熟料(C3S、C2S)進行水化反應導致強度上升。此外,火害後再經空氣養護之試體超音波速及殘餘抗壓強度回復情形不佳,甚至有明顯下降之趨勢,因短時間內從空氣中得到之水分還是不足以供應再次水化作用,造成強度無法繼續發展。
This study investigated the effect of high temperature on early cured mortar with Ground Granulated Blast Furnace Slag (GGBFS). The mortar (W/B=0.4、0.5) was cured in air for 3、7、14、28、56 days, and then exposed to high temperatures ( 300℃、450℃、600℃、850℃、Standard Temperature Curve (STC)). The TGA test were conducted to understand the material properties of the cement mortars with different W/B ratios and curing ages. After exposed to the high temperature, residual compressive strength test (RCS) and ultrasonic pulse velocity test (UPV) were carried out on the next day, 35th day after casting, and recuring 21day.
The results revealed that the UPV decreased for all specimens after exposed to high temperature, and the reduction was more significant for specimens with higher temperature. Internal structural damage caused by the high temperature lowered their densities. In addition, the RCS of mortars with W/B=0.4 significantly rose after the motars exposed to 450℃ and 600℃. The rise was attributed to the evaporation of free water and crystallization water, and then transportation of moisture in mortars. The high temperatures accelerated hydration at the early stage of mortars. Furthermore, an increase in compressive strength at 450℃ was found for the specimens of W/B=0.5. The increase may be caused by enhanced hydration reaction between unhydrated cement and crystal water due to heating. Additionally, insignificant recovery of the UPV and RCS after post-fire-curing existed. Moisture supply with air-curing to continue and expedite the rehydration reactions was not effective.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
1.1 研究動機與目的 1
1.2 研究方法與步驟 2
二、文獻回顧 3
2.1 水泥之組成及水化 3
2.1.1 水泥之組成成分 3
2.1.2 卜特蘭水泥之水化反應(Hydration) 5
2.1.3 養護方法影響 11
2.1.4 養護時間與溫度之影響 12
2.2 波索嵐摻料-爐石粉 15
2.2.1 爐石粉 16
2.2.2 爐石粉之水化性質 18
2.2.3 爐石粉對新拌及硬固水泥砂漿性質之影響 19
2.3 水泥砂漿受熱後之性質變化 21
2.3.1 受熱後之物理及化學反應 21
2.3.2 外觀變化 23
2.3.3 強度變化 27
2.4 高性能混凝土受火害之性質變化 29
2.5 混凝土及水泥砂漿於養護期間受火害之強度影響 32
三、實驗方法 36
3.1 實驗規劃 36
3.1.1 材料性質分析及未受火害試驗: 38
3.1.2 暴露火害實驗 39
3.2 實驗材料 41
3.3 實驗設備 43
四、結果與討論 46
4.1 未受火害實驗之結果與討論分析 46
4.2 材料性質實驗之結果與討論分析 48
4.3 受火害實驗之結果及討論分析 51
4.3.1 外觀變化 51
4.3.2 超音波試驗結果與討論 52
4.3.3 抗壓強度試驗結果與討論 60
4.3.4 爐石對水泥砂漿受火害後之影響 68
五、結論與建議 71
六、參考文獻 74
附錄一 熱流實驗 79
附錄二 各項實驗數據 80
1. 臺灣南部環境毒災應變隊(高雄隊),“高雄縣某中學新建校舍火警事故”,環境毒災簡訊電子報,2007。
2. Neville A.M., “Properties of Concrete”, Wiley, 1996.
3. 王櫻茂,“混凝土”,三民圖書股份有限公司,1980。
4. 黃兆龍,“混凝土性質與行為”,詹氏書局,2005。
5. Young J.F., Mindess S., David D., “Conrete”, Prentice-Hall Inc., Upper Saddle River,2002.
6. Young J.F., Mindess S., Gary R.J., Bentur A., “The Science and Technology of Civil Engineering Materials”, Prentice-Hall Inc., New Jersey, 1998.
7. 黃兆龍,“高性能混凝土理論與實務”,詹氏書局,2003。
8. 行政院公共工程委員會,“公共工程高爐石混凝土使用手冊” ,行政院公共工程委員會,2001。
9. 沈得縣,“高爐熟料與飛灰之波索蘭反應機理對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,1991。
10. Hooton R.D., Emery J.J., “Sulfate of a Canadian slag cement”, ACI Materials Journal, 87, pp. 847-555, 1990.
11. 朱煌林,“探討混凝土之耐火性評估”,臺灣省土木技師公會土木技師報,2001。
12. Bazant Z.P., Kaplan M.F., “Concrete at High Temperatures”, Longman, London, 1996.
13. Carvel R., “Fire Protection in Concrete Tunnels”, Handbook of Tunnel Fire Safety (Eds. Beard A., Carvel R.), Thomas Telford, London, 2005.
14. Mindess S., Young J.F., Darwin D., “Concrete”, Prentice Hall Inc, New Jersey, USA, 2003.
15. Cruz C.R., “Elastic Properties of Concrete at High Temperature”, PAC Research and Development Laboratories, 8, pp.37-45, 1966.,
16. Czernin W., Cement Chemistry and Physics for Civil Engineers, New York: Chemical Publishing Co., Inc. 1980.
17. 沈進發,沈得縣,“鋼筋混凝土結構物火害後之安全評估程序”,內政部建築研究所專題研究計劃成果報告( MOIS 860001 ),1997。
18. Erlin B., Kuenning W.H., Hime W.G., “Evaluating fire damage to concrete structures”, Concrete Constr, 2, pp. 76-82, 1972.
19. Green J.K., “Reinstatement of concrete structures after fire”, The Architects’ J1, 1, pp. 93-99, 1971.
20. Guise S.E., “Petrographic and color analysis for assessment of fire damaged concrete”, In: Jany L, et al., editor. Proceedings of the 19th International Conference on Cement Microscopy, pp. 365-372, 1999.
21. 沈得縣、林英俊,“混凝土結構物火害後安全性能評估方法之探討”,內政部建築研究所專題研究計劃成果報告( MOIS 850012 ),1996。
22. 張郁慧,“火害延時對混凝土材料性質之影響”,國立台灣科技大學營建工程技術研究所碩士論文,1993。
23. Arioz O., “Effects of elevated temperatures on properties of concrete”, Fire Safety Journal, 42, pp.516-522, 2007.
24. Dougill J.W., “Materials Dominated Aspects of Design for Structural Fire Resistance of Concrete Structure”, ACI publication SP-80. Fire Safety Concrete Struct, pp. 151-176, 1983.
25. Georgali B., Tsakiridis P.E., “Microstructure of fire-damaged concrete.A case study”, Cement & Concrete Composites, 27, pp. 255-259, 2005.
26. 吳敏祺,“高強度混凝土受火害爆裂之因素及力學行為”,國立台灣科技大學營建工程技術研究所碩士論文,1994。
27. Khoury G.A., Majorana C.E., Pesavento F., Schrefler B.A., “Modelling of heated Concrete”, Mag. Concrete Res, 54, pp. 77-101, 2002.
28. Hertz K.D., “Concrete strength for fire safety design”, Mag. Concrete Res, 57, pp. 445-453, 2005.
29.Janotka I, Nurnbergerova T., “Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume”, Nucl Eng Des, 235, pp. 2019-2032, 2005.
30. Akman M.S., “Building damages and repair principles”, Turkish Chamber of Civil Engineers, Istanbul, Turkey, published in Turkish, 2000.
31. 黃兆龍,“高等混凝土技術”,國立台灣工業科技學院教案,1992。
32. Skvara F., Sevcik V., “Influence of high temperature on gypsum-free Portland cement materials”, Cement and Concrete Research, 29, pp. 713-717, 1999.
33. 張正平,“高強度混凝土受高溫之性質”,國立交通大學土木工程學系碩士論文,1996。
34. 蔡炫業,“火害後高強度混凝土之材料性質”,國立台灣科技大學工程技術研究所碩士論文,1992。
35. Luo X., Sun W., Chan S.Y.N., “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete”, Cement and Concrete Research, 30, pp. 379-383, 2000.
36. Kalifa P., Menneteau F.D., Quenard D., “Spalling and pore pressure in HPC at high temperature”, Cement and Concrete Research, 30, pp. 1915-1927, 2000.
37. 沈進發、陳舜田,“高溫造成混凝土材料性質改變及火場溫度推估法”,建築物火害及災後安全評估法研討會,第85-107頁,1999。
38. Wong Y.L., Xu Y., Poon C.S., Anson M., “Influence of PFA on cracking of concrete and cement paste after exposure to high temperature”, Cement and Concrete Research, 33, pp. 2009-2016, 2003.
39. Wong Y.L., Xu Y., Poon C.S., Anson M., “Impact of hoghtemperature on PFA concrete”, Cement and Concrete Research, 31, pp. 1065-1073, 2001.
40. Li M., Qian C.X., Sun W., “Mechanical properties of high-strength concrete after fire”, Cement and Concrete Research, 34, pp. 1001-1005, 2003.
41.Diederichs U., Jumppanen U.M., Penttala V., “Behavior of high strength concrete at high temperatures”, Report No. 92, Department of Structural Engineering, Helsinki University of Technology, 1989.
42. Grainger B.N., Concrete at High Temperatures, Central Electricity Research Laboratories, UK, 1980.
43.Sarshar R., Khoury G.A., “Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures”, Mag. Concr. Res., 45, pp. 51-61, 1993.
44. Poon C.S., Azhar S., Anson M., Wong Y.L., “Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures”, Cement and Concrete Research, 31, pp. 1291-1300, 2001.
45. Wang H.Y., “The effects of elevated temperature on cement paste containing GGBFS”, Cement & Concrete Composites, 30, pp. 992-999, 2008.
46. Aydin S., “Development of a high-temperature-resistant mortar by using slag and pumice”, Fire Safety Journal, 43, pp. 610-617, 2008.
47. Xiao J., Xie M., Zhang CH., “Residual compressive behavior of pre-heated high-performance concrete with blast-furnace-slag”, Fire Safety Journal, 41, pp. 91-98, 2006.
48. 黃文成,“水泥砂漿於養護期間受火害之強度影響研究”,國立高雄第一科技大學環境與安全衛生工程系碩士論文,2009。
49. Chen B., Li C., Chen L., “Experiment study of mechanical properties of normal-strength concrete exposed high temperature at an early age”, Fire Safety Journal, 44, pp. 997-1002, 2009.
50. 中華民國國家標準CNS 11227,“建築用防火門耐火試驗法”,經濟部標準檢驗局,2002。
51. Pane I., Hansen W., “Investigation of blended cement hydration by isothermal calorimetry and thermal analysis”, Cement and Concrete Research, 35, pp. 115- 1164, 2005.
52. Topcu I.B., Toprak M.U., “Fine aggregate and curing temperature effect on concrete maturity”, Cement and Concrete Research, 35, pp. 758-762, 2005.
53. Phan L.T., Davis F.L., Lawson J.R., “Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete”, Material and Structures, 34, pp. 83-91, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top