跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉達偉
研究生(外文):Liu, Ta-Wei
論文名稱:多巴胺接受器受藥物刺激下對大鼠腦內局部場電位同步關係之研究
論文名稱(外文):Synchronization Study of Regional Local Field Potential in Rat after Dopamine Receptor Stimulation
指導教授:陳右穎陳右穎引用關係
指導教授(外文):Chen, You-Yin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:50
中文關鍵詞:局部場電位雙頻譜多巴胺接受器
外文關鍵詞:Local Field PotentialBispectrumDopamine receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在腦神經科學研究中,腦部神經震盪訊號代表了腦部的活動情形。藉由不同區塊的腦部神經震盪訊號記錄,研究者得以開始探討腦部網路中連結關係與腦區間影響關係。不同區塊的腦部的震盪訊號已被證實在腦部網路中會交互影響,訊號間的同步性探討是了解腦部中運作機制的一個重要方法。在疾病影響或是外部刺激影響下,腦部內線性與非線性的訊號同步關係開始被廣泛探討。然而不同腦部區塊的震盪訊號彼此之間相互影響的關係須要被進一步探討,以了解腦部網路中的運作情形,是本研究要探討的主要方向。
本研究目標在對於大鼠多巴胺接受器刺激下探討腦部訊號間的線性與非線性關係,經由記錄大鼠腦內紋狀體與運動皮質區的局部場電位訊號(LFP),施與多巴胺D2接受器促進劑與拮抗劑影響正常大鼠的多巴胺系統,以單一頻段連貫性與跨頻段雙相位鎖定方式,比較在正常狀態與在藥物刺激影響下,腦部紋狀體與運動皮質區間局部場電位訊號震盪同步關係。由實驗結果得知,在多巴胺促進劑與拮抗劑影響之下,低頻段德塔(δ),西塔(θ)的震盪訊號會明顯的出現因刺激而導致的相同頻帶間同步性加強與減弱現象。而藥物的刺激同時也會改變跨頻帶間並帶有特定方向性的同步關係。本研究說明了多巴胺藥物刺激下不僅改變特定腦部間的能量變化,同時也會影響腦區間神經震盪訊號的同步性關係,為與多巴胺系統相關的腦部神經訊號運作情形提供了更進一步的了解與分析。

Neural oscillation represent the neural activity in nervous system, by recording neural oscillation connectivity and interactions within brain networks could be investigated in an effective measure. A wealth of research have suggested that electrophysiological signals in brain networks would interact with each other, and synchronization between distinct areas has been implied the mechanism for brain interaction. With disease influence or external stimulation, the neural oscillation induce linear and non-linear interaction. However, the neural oscillation interaction originated from different brain areas need more investigation to realize the operation in brain networks.
Therefore, the aim of this thesis attempts to explore the non-linear interaction with cross-frequency coupling in brain network during the stimulation of dopamine receptors. We record local field potential (LFP) in rats from striatum and motor cortex, giving stimulation on dopamine D2 receptors with dopamine receptor agonist and antagonist. Analysis with coherence and bispectral analysis discuss LFP synchronization between striatum and motor cortex that changes with drug stimulations, discussing the interaction between brain areas with and without drug stimulations.
Results demonstrate that oscillations between striatum and motor cortex at delta and theta bands appear significant inverse synchrony changes in identical frequency band with different stimulations. Meanwhile, different stimulations induce cross-frequency bands synchronized or interferential synchrony fluctuations in brain with direction specificity, providing a further investigation and a special point of view in intracerebral neural oscillations interaction in neural network when dopamine receptors stimulated by drugs.

摘    要 i
ABSTRACT ii
誌謝       iii
Table of content iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 7
2.1 Experiment Procedures 7
2.1.1 Subjects and Surgery procedures 7
2.1.2 Recording system 8
2.1.3 Pharmacological treatments 9
2.1.4 Experiment Design and Data Recording 9
2.2 Data analysis 12
2.2.1 Coherence 12
2.2.2 Bi-phase locking 13
2.3 Spectral analysis 16
2.3.1 Frequency band segmentation 16
2.3.2 Definition of Region of Interest (ROI) in Cross-frequency bands interaction 16
2.4 Statistical Analysis 19
Chapter 3 Results 21
3.1 Identical frequency band interaction by dopamine receptors agonist and antagonist stimulation 21
3.1.1 Drug-induced interaction at Delta band 21
3.1.2 Drug-induced interaction at Theta band 22
3.1.3 Drug-induced interaction at Alpha band 24
3.1.4 Drug-induced interaction at Beta band 24
3.1.5 Drug-induced interaction at Gamma band 25
3.2 Cross frequency bands interaction by dopamine receptors agonist and antagonist stimulation 27
3.2.1 Agonist-induced cross frequency bands interaction 27
3.2.2 Antagonist-induced cross frequency bands interaction 31
Chapter 4 Discussion 38
4.1 Synchrony in identical frequency band 38
4.2 Synchrony in cross frequency bands 39
4.2.1 Cross frequency bands synchronization by agonist stimulation 39
4.2.2 Cross frequency bands synchronization by antagonist stimulation 41
4.3 Independency of gamma rhythms in network 43
4.4 Different sessions of synchrony variations 43
4.5 Coexistence of identical and cross frequency bands synchronization 44
4.6 Meaning of synchrony variation 44
4.7 Limitation of experiments 44
4.7.1 Bilateral connectivity in brain 44
4.7.2 Movements observation 45
4.7.3 Oscillations interaction in multiple brain areas 45
Chapter 5 Conclusion and Future Works 46
5.1 Conclusion 46
5.2 Future work 46
Reference 48
[1] P. Pinsky and J. Rinzel, "Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons," Journal of Computational Neuroscience, vol. 1, pp. 39-60, 1994.
[2] J. Rinzel and G. Ermentrout, "Analysis of neural excitability and oscillations," Methods in neuronal modeling, vol. 2, pp. 251-292, 1998.
[3] M. Carmena Jose, A. Lebedev Mikhail, E. Crist Roy, E. O'Doherty Joseph, M. Santucci David, F. Dimitrov Dragan, G. Patil Parag, S. Henriquez Craig, and A. Nicolelis Miguel, "Learning to Control a Brain-Machine Interface for Reaching and Grasping by Primates," PLoS Biology, vol. 1.
[4] J. Chapin, "Using multi-neuron population recordings for neural prosthetics," Nature neuroscience, vol. 7, pp. 452-455, 2004.
[5] F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, "The brainweb: phase synchronization and large-scale integration," Nature Reviews Neuroscience, vol. 2, pp. 229-239, 2001.
[6] O. Creutzfeldt, S. Watanabe, and H. Lux, "Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation," Electroencephalography and clinical Neurophysiology, vol. 20, pp. 1-18, 1966.
[7] J. Donoghue, J. Sanes, N. Hatsopoulos, and G. Gaal, "Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements," Journal of neurophysiology, vol. 79, p. 159, 1998.
[8] M. Rasch, A. Gretton, Y. Murayama, W. Maass, and N. Logothetis, "Inferring spike trains from local field potentials," Journal of neurophysiology, vol. 99, p. 1461, 2008.
[9] P. Sauseng, W. Klimesch, W. Gruber, and N. Birbaumer, "Cross-frequency phase synchronization: a brain mechanism of memory matching and attention," Neuroimage, vol. 40, pp. 308-317, 2008.
[10] O. Jensen and L. Colgin, "Cross-frequency coupling between neuronal oscillations," Trends in Cognitive Sciences, vol. 11, pp. 267-269, 2007.
[11] A. Priori, G. Foffani, A. Pesenti, F. Tamma, A. Bianchi, M. Pellegrini, M. Locatelli, K. Moxon, and R. Villani, "Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease," Experimental neurology, vol. 189, pp. 369-379, 2004.
[12] X. Li, D. Li, L. Voss, and J. Sleigh, "The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis," Neuroimage, vol. 48, pp. 501-514, 2009.
[13] C. Dejean, C. Gross, B. Bioulac, and T. Boraud, "Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat," Journal of neurophysiology, vol. 100, p. 385, 2008.
[14] S. Marceglia, G. Foffani, A. Bianchi, G. Baselli, F. Tamma, M. Egidi, and A. Priori, "Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease," The Journal of Physiology, vol. 571, p. 579, 2006.
[15] T. Womelsdorf and P. Fries, "Neuronal coherence during selective attentional processing and sensory-motor integration," Journal of Physiology-Paris, vol. 100, pp. 182-193, 2006.
[16] P. Fries, "A mechanism for cognitive dynamics: neuronal communication through neuronal coherence," Trends in Cognitive Sciences, vol. 9, pp. 474-480, 2005.
[17] D. Williams, M. Tijssen, G. Van Bruggen, A. Bosch, A. Insola, V. Lazzaro, P. Mazzone, A. Oliviero, A. Quartarone, and H. Speelman, "Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans," Brain, vol. 125, p. 1558, 2002.
[18] J. Sarnthein and D. Jeanmonod, "High thalamocortical theta coherence in patients with Parkinson's disease," Journal of Neuroscience, vol. 27, p. 124, 2007.
[19] C. Nikias and J. Mendel, "Signal processing with higher-order spectra," IEEE Signal Processing Magazine, vol. 10, pp. 10-37, 1993.
[20] S. Marceglia, A. Bianchi, G. Baselli, G. Foffani, F. Cogiamanian, N. Modugno, S. Mrakic-Sposta, A. Priori, and S. Cerutti, "Interaction between rhythms in the human basal ganglia: application of bispectral analysis to local field potentials," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, pp. 483-492, 2007.
[21] H. He and D. Thomson, "Canonical bicoherence analysis of dynamic EEG data," Journal of Computational Neuroscience, pp. 1-12, 2009.
[22] T. Bullock, J. Achimowicz, R. Duckrow, S. Spencer, and V. Iragui-Madoz, "Bicoherence of intracranial EEG in sleep, wakefulness and seizures," Electroencephalography and clinical Neurophysiology, vol. 103, pp. 661-678, 1997.
[23] J. Lachaux, E. Rodriguez, J. Martinerie, and F. Varela, "Measuring phase synchrony in brain signals," Human Brain Mapping, vol. 8, pp. 194-208, 1999.
[24] L. Melloni, C. Molina, M. Pena, D. Torres, W. Singer, and E. Rodriguez, "Synchronization of neural activity across cortical areas correlates with conscious perception," Journal of Neuroscience, vol. 27, p. 2858, 2007.
[25] F. Darvas, K. J. Miller, R. P. N. Rao, and J. G. Ojemann, "Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex," Journal of Neuroscience, vol. 29, p. 426, 2009.
[26] F. Darvas, J. Ojemann, and L. Sorensen, "Bi-phase locking--a tool for probing non-linear interaction in the human brain," Neuroimage, vol. 46, pp. 123-132, 2009.
[27] W. Dimpfel, "Pharmacological modulation of dopaminergic brain activity and its reflection in spectral frequencies of the rat electropharmacogram," Neuropsychobiology, vol. 58, pp. 178-186, 2009.
[28] A. Pisani, P. Bonsi, D. Centonze, P. Calabresi, and G. Bernardi, "Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons," Journal of Neuroscience, p. 69, 2000.
[29] J. Horvitz, G. Williams, and R. Joy, "Time-dependent actions of D2 family agonist quinpirole on spontaneous behavior in the rat: dissociation between sniffing and locomotion," Psychopharmacologia, vol. 154, pp. 350-355, 2001.
[30] R. Costa, S. Lin, T. Sotnikova, M. Cyr, R. Gainetdinov, M. Caron, and M. Nicolelis, "Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction," Neuron, vol. 52, pp. 359-369, 2006.
[31] C. Van Hartesveldt, "Temporal and environmental effects on quinpirole-induced biphasic locomotion in rats," Pharmacology Biochemistry and Behavior, vol. 58, pp. 955-960, 1997.
[32] L. Parr-Brownlie and B. Hyland, "Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat," Journal of Neuroscience, vol. 25, p. 5700, 2005.
[33] J. Hosp, K. Molina-Luna, B. Hertler, C. Atiemo, and A. Luft, "Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study," Neuroscience, vol. 159, pp. 692-700, 2009.
[34] M. van der Meer and A. Redish, "Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task," 2009.
[35] V. Vorobyov, N. Schibaev, M. Morelli, and A. Carta, "EEG modifications in the cortex and striatum after dopaminergic priming in the 6-hydroxydopamine rat model of Parkinson's disease," Brain research, vol. 972, pp. 177-185, 2003.
[36] A. Kalda, L. Herm, A. Rinken, A. Zharkovsky, and J. Chen, "Co-administration of the partial dopamine D2 agonist terguride with L-dopa attenuates L-dopa-induced locomotor sensitization in hemiparkinsonian mice," Behavioural brain research, 2009.
[37] J. Taylor, C. Bishop, and P. Walker, "Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat," Pharmacology Biochemistry and Behavior, vol. 81, pp. 887-893, 2005.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文