陳英昌 (1985) 不同醃漬酸菜方法之探討。中興大學食品科學所碩士論文。張剛 (2007) 乳酸細菌-基礎、技術和應用。第一版。化學工業出版社。
郭本恒 (2004) 益生菌。第一版。化學工業出版社。
Adams, M. R. and C. J. Hall (1988). Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. Int J Food Science Technology. 23: 287-292.
Anderssen, E. L., D. B. Diep, et al. (1998). Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol. 64(6): 2269-2272.
Archibald, F. S. and M. N. Duong (1984). Manganese acquisition by Lactobacillus plantarum. J Bacteriol. 158(1): 1-8.
Barakat, R. K., M. W. Griffiths, et al. (2000). Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol. 62(1-2): 83-94.
Barrangou, R., S. S. Yoon, et al. (2002). Identification and characterization of Leuconostoc fallax strains isolated from an industrial sauerkraut fermentation. Appl Environ Microbiol. 68(6): 2877-2884.
Beaugerie, L. and J. C. Petit (2004). Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol. 18(2): 337-352.
Brown, J. L., S. North, et al. (1993). SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol. 175(21): 6908-6915.
Bulut, C., H. Gunes, et al. (2005). Homofermentative lactic acid bacteria of a traditional cheese, Comlek peyniri from Cappadocia region. J Dairy Res. 72(1): 19-24.
Byczkowski, J. Z. and T. Gessner (1988). Biological role of superoxide ion-radical. Int J Biochem. 20(6): 569-580.
Cerning, J. (1995). Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait. 75: 463-472
Chan, G. C., W. K. Chan, et al. (2009). The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2: 25.
Corcoran, G. D., N. Gibbons, et al. (1991). Septicaemia caused by Pediococcus pentosaceus: a new opportunistic pathogen. J Infect. 23(2): 179-182.
De Vuyst, L. and B. Degeest (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 23(2): 153-177.
Delves-Broughton, J., P. Blackburn, et al. (1996). Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 69(2): 193-202.
Eklund, T. (1984). The effect of carbon dioxide on bacterial growth and on uptake processes in bacterial membrane vesicles. Int J Food Microbiol. 1: 179-185.
Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol. 1(2): 117-126.
Frengova, G. I., E. D. Simova, et al. (2002). Exopolysaccharides produced by lactic acid bacteria of kefir grains. Z Naturforsch C. 57(9-10): 805-810.
Giraud, E., A. Champailler, et al. (1994). Degradation of Raw Starch by a Wild Amylolytic Strain of Lactobacillus plantarum. Appl Environ Microbiol. 60(12): 4319-4323.
Gonzalez, B., P. Arca, et al. (1994). Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol. 60(6): 2158-2163.
Goulas, A. K., J. M. Cooper, et al. (2004). Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase. Biotechnol Bioeng. 88(6): 778-787.
Grobben, G. J., I. C. Boels, et al. (2000). Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. J Dairy Res. 67(1): 131-135.
Hirayama, K. and J. Rafter (2000). The role of probiotic bacteria in cancer prevevtion. Microbes Infect. 2: 681-686.
Hofvendahl, K. and B. Hahn-Hagerdal (2000). Factors affecting the fermentative lactic acid production from renewable resources(1). Enzyme Microb Technol 26(2-4): 87-107.
Holo, H., O. Nilssen, et al. (1991). Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 173(12): 3879-3887.
Hotchkiss, J. H., J. H. Chen, et al. (1999). Combined effects of carbon dioxide addition and barrier films on microbial and sensory changes in pasteurized milk. J Dairy Sci. 82(4): 690-695.
Huang, L., C. W. Forsberg, et al. (1986). Influence of External pH and Fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Appl Environ Microbiol. 51(6): 1230-1234.
Jay, J. M. (1982). Antimicrobial properties of diacetyl. Appl Environ Microbiol. 44(3): 525-532.
Jiang, T., A. Mustapha, et al. (1996). Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J Dairy Sci. 79(5): 750-757.
Jimenez-Diaz, R., J. L. Ruiz-Barba, et al. (1995). Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol. 61(12): 4459-4463.
Kimmel, S. A., R. F. Roberts, et al. (1998). Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl Environ Microbiol. 64: 659-664.
Kong, S. and A. J. Davison (1980). The role of interactions between O2, H2, OH., e- and O2- in free radical damage to biological systems. Arch Biochem Biophys. 204: 13-29.
Leroy, F. and De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 15(2): 67-78.
Lindgren, S. E. and W. J. Dobrogosz (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev. 7(1-2): 149-163.
Loch, T. P., W. Xu, et al. (2008). Isolation of a Carnobacterium maltaromaticum- like bacterium from systemically infected lake whitefish (Coregonus clupeaformis). FEMS Microbiol Lett. 288(1): 76-84.
Looijesteijn, P. J., L. Trapet, et al. (2001). Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol. 64(1-2): 71-80.
Looijesteijn, P. J., W. H. van Casteren, et al. (2000). Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J Appl Microbiol. 89(1): 116-122.
Lu, Z., F. Breidt, et al. (2003). Bacteriophage ecology in commercial sauerkraut fermentations. Appl Environ Microbiol. 69(6): 3192-3202.
Matsuzaki, T. and J. Chin (2000). Modulating immune responses with probiotic bacteria. Immunol Cell Biol. 78(1): 67-73.
McDonald, L. C., R. F. McFeeters, et al. (1987). A differential medium for the enumeration of homofermentative and heterofermentative lactic Acid bacteria. Appl Environ Microbiol. 53(6): 1382-1384.
Mozzi, F., G. S. de Giori, et al. (1996). Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol Lett. 18: 435-439.
Patel, S., A. Majumder, et al. (2011). Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol.
Piard, J. C. and M. Desmazeaud (1991). Inhibiting factors produced by lactic acid bacteria: 1.Oxygen metabolites and catabolism end-products. Lait. 71: 525-541.
Rao, D. R. and J. C. Reddy (1984). Effect of lactic fermantation of milk on milk lipids. J Food Sci. 49: 748-750.
Reid, G. (2005). The importance of guidelines in the development and application of probiotics. Curr Pharm Des. 11(1): 11-16.
Remiger, A., V. G. Eijsink, et al. (1999). Purification and partial amino acid sequence of plantaricin 1.25 alpha and 1.25 beta, two bacteriocins produced by Lactobacillus plantarum TMW1.25. J Appl Microbiol. 86(6): 1053-1058.
Richards, R. M., D. K. Xing, et al. (1995). Activity of p-aminobenzoic acid compared with other organic acids against selected bacteria. J Appl Bacteriol. 78(3): 209-215.
Robyt, J. F. (1995). Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem. 51: 133-168.
Ruas-Madiedo, P. and C. G. de los Reyes-Gavilan (2005). Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 88(3): 843-856.
Ruas-Madiedo, P., J. Hugenholtz, et al. (2002). An overview of the functionality of exopolysaccharides produced. Int Dairy J. 12: 163-171.
Saarela, M., L. Lahteenmaki, et al. (2002). Gut bacteria and health foods--the European perspective. Int J Food Microbiol. 78(1-2): 99-117.
Sanz, B., D. Selgas, et al. (1988). Characteristics of Lactobacilli isolated from dry fermented sausages. Int J Food Microbiol. 6(3): 199-205.
Smulders, F. J. M., P. Barendsen, et al. (1986). Review: Lactic acid: considerations in favour of its acceptance as a meat decontamininant. J Food Technol. 21: 419-436.
Talarico, T. L., I. A. Casas, et al. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 32(12): 1854-1858.
Tallon, R., P. Bressollier, et al. (2003). Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol. 154(10): 705-712.
Todorov, S. D. and L. M. T. Dicks (2004). Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. 20: 643-650.
van Geel-Schutten, G. H., F. Flesch, et al. (1998). Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl Microbiol Biotechnol. 50: 697-703.
van Reenen, C. A., L. M. Dicks, et al. (1998). Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol. 84(6): 1131-1137.
Vinderola, G., G. Perdigon, et al. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 36(5-6): 254-260.
Welman, A. D. and I. S. Maddox (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21(6): 269-274.
Weng, P. F., Z. F. Wu, et al. (2011). A new cleaner production technique of pickle mustard tuber at low salinity by lactic acid bacteria. J Food Process Engineering. 34(4): 1144-1155.
Wong, H. C. and Y. L. Chen (1988). Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Appl Environ Microbiol. 54(9): 2179-2184.
Woolford, M. K. (1975). Microbiological screening of food preservatives, cold sterilants and specific antimicrobial agents as potential silage additives. J Sci Food Agric. 26: 229-237.
Wu, M. H., T. M. Pan, et al. (2010). Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol. 144(1): 104-110.
Yang, Z. (2000). Antimicrobial compounds and extracellular polysaccharides produced by lactic acid bacteria: structures and properties. University of Helsinki: ISBN 951-945-9146-9141.
Yoo, S. H., E. J. Yoon, et al. (2004). Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol. 34(1-2): 37-41.